
CT-Connect for Aspect
Programming Guide
Order Number: 05-0803-001

Revision/Update Information: This is a new manual.

Software and Version: CT-Connect™ Server for Aspect
Version 1.1, and
CT-Connect Application Programming
Interface for Aspect Version 1.1.

© Dialogic Corporation 1996.

All Rights Reserved.

This document may not, in whole or in part, be reduced, reproduced, stored in a retrieval
system, translated, transmitted in any form or by any means, electronic or mechanical, without
the express written consent of Dialogic Corporation.

The contents of this document are subject to change without notice. Every effort has been made
to ensure the accuracy of this document. However, due to the ongoing Product improvements
and revisions, Dialogic Corporation cannot guarantee the accuracy of printed material after the
date of publication nor can it accept responsibility for errors or omissions. Dialogic Corporation
will publish updates and revisions to this document as needed.

The Dialogic software referred to in this document is provided under a Software License
Agreement. Refer to the Software License Agreement for complete details governing the use of
the software.

DIALOGIC is a registered trademark, and CT-Connect is a trademark of Dialogic Corporation.

Application Bridge, Aspect CallCenter, and Aspect TeleSet are registered trademarks, and Event
Bridge and Resource Bridge are trademarks of Aspect Telecommunications Corporation.
DEC, DECnet, Digital, OpenVMS, and VAX are trademarks of Digital Equipment Corporation.
HP and HP-UX are registered trademarks of Hewlett-Packard Co.
IBM and OS/2 are registered trademarks, and OS/2 WARP is a trademark of International
Business Machines Corporation.
NetBIOS is a trademark of Micro Computer Systems, Inc.
Novell is a registered trademark of Novell, Inc.
OSF/1 is a trademark of the Open Software Foundation, Inc.
SCO OpenServer is a trademark, and SCO is a registered trademark of The Santa Cruz
Operation, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.
Windows and Windows NT are trademarks, and Microsoft, MS, and MS–DOS are registered
trademarks of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

Date: November 18, 1996

Contents

About This Manual . vii

1 Programming Overview

1.1 Overview of CTC for Aspect . 1–1
1.1.1 CTC/AB Communications Link . 1–1
1.1.2 Using Logical Channels . 1–2
1.1.3 Monitor Channels . 1–3
1.2 Introduction to CTC/AB Routines . 1–3
1.2.1 Controlling the Communications Channel 1–3
1.2.1.1 Routines That Control the Communications Channel . . . 1–3
1.2.1.2 Sequence for Calling the Routines 1–4
1.2.2 Telephony Functions . 1–5
1.3 Format of Routines . 1–5
1.3.1 Unsigned Integers and Windows 3.1/3.11 1–6
1.4 Application Bridge Messages . 1–6
1.5 Use of Arguments . 1–6
1.5.1 Data Type . 1–6
1.5.2 Access to Data . 1–7
1.5.3 Passing Mechanism . 1–8
1.5.4 Optional Arguments . 1–8
1.6 Definitions . 1–9
1.7 Constants . 1–9
1.8 Errors and Condition Values . 1–9
1.8.1 Link Problems . 1–10
1.9 Exception Handling . 1–10
1.10 Calling CTC/AB Routines . 1–10
1.11 CTC/AB and Multithreaded Programming 1–11
1.11.1 Threads . 1–11
1.11.2 Multithreaded Programming . 1–11
1.11.3 Thread Execution . 1–11
1.11.4 Using Multithreaded Programming with CTC/AB 1–12
1.11.5 Creating a Multithreaded Program . 1–12

iii

1.12 Using the CTC/AB Windows Socket Interface 1–13
1.13 Compiling and Linking Your Program . 1–13
1.13.1 Windows NT and Windows 95 Clients 1–13
1.13.2 Windows 3.1/3.11 Client . 1–14
1.13.3 Digital UNIX Client . 1–15
1.13.4 HP-UX Client . 1–15
1.13.5 SCO OpenServer Client . 1–16
1.13.6 OpenVMS Client . 1–16
1.13.7 OS/2 Client . 1–17

2 Routine Specifications

2.1 Aspect Application Bridge Messages . 2–1
2.2 Application Bridge Software Releases . 2–1

ctcAbAddMonitor . 2–2
ctcAbAnswerCall . 2–6
ctcAbAssign . 2–8
ctcAbConferenceJoin . 2–16
ctcAbConsultationCall . 2–18
ctcAbDeassign . 2–23
ctcAbDeflectCall . 2–24
ctcAbErrMsg . 2–28
ctcAbGetChannelInformation . 2–30
ctcAbGetEvent . 2–34
ctcAbGetMonitor . 2–54
ctcAbHangupCall . 2–56
ctcAbHoldCall . 2–58
ctcAbMakeCall . 2–59
ctcAbMakePredictiveCall . 2–64
ctcAbReassignResource . 2–73
ctcAbRemoveMonitor . 2–76
ctcAbRetrieveHeld . 2–78
ctcAbSetAgentStatus . 2–80
ctcAbSetMonitor . 2–83
ctcAbSingleStepTransfer . 2–85
ctcAbTransferCall . 2–90
ctcAbWinGetEvent . 2–92

iv

3 Error and Condition Values Returned

3.1 Mapping Errors to Routines . 3–1

Index

Figures

1–1 Example CTC/AB Network . 1–2

Tables

1 CTC/AB Features and Application Bridge Release 5.0 viii
1–1 Controlling the Communications Channel 1–4
1–2 Telephony Functions . 1–5
2–1 Routines Supported by Device Type . 2–11
2–2 Events Returned by ctcAbGetEvent for Stations and

TeleSets . 2–40
2–3 Events Returned by ctcAbGetEvent for Trunks 2–45
2–4 Event Returned by ctcAbGetEvent for ACD Groups and

Trunk Groups . 2–48
2–5 Events Returned by ctcAbGetEvent for InterQueues 2–48
3–1 Condition Values Returned . 3–2

v

About This Manual

Dialogic®’s CT-Connect™ (CTC) for Aspect software enables a telephony
application to access the features of an Aspect CallCenter® configured with
the Aspect Application Bridge® software. Throughout this manual, the
abbreviation CTC/AB (where AB stands for Application Bridge) is used to
refer to the CTC for Aspect software.

This manual describes how to write telephony applications using the CTC
Application Programming Interface (API) for Aspect software, and includes
detailed descriptions of all CTC/AB programming routines.

Aspect Application Bridge Software
To support CTC/AB features described in this manual, you require one of the
following:

• Aspect Application Bridge Release 5.0

Note that not all CTC/AB features are supported with Application Bridge
Release 5.0. Refer to Table 1 for details.

• Aspect Application Bridge Release 6.0. The following software options are
required to fully support CTC/AB features:

Event Bridge™

This software enables CTC/AB to use Event Bridge messages to
communicate changes in agent states and call states for calls involving
trunks or TeleSets.

Resource Bridge™

This software enables your application to use the ctcAbReassignRe-
source routine to change the ACD group, supervisor team, or Class of
Service (COS) for an agent, and the ctcAbMakePredictiveCall routine
to initiate calls on behalf of an ACD group. Chapter 2 describes these
routines in detail.

vii

CTC/AB Features and Application Bridge Release 5.0
Table 1 describes the restrictions that apply when you use CTC/AB with
Application Bridge Release 5.0.

Table 1 CTC/AB Features and Application Bridge Release 5.0

CTC/AB Function Restriction

ctcAbAddMonitor Application Bridge Release 5.0 does not support monitoring ACD
groups or trunk groups on a monitor channel.

ctcAbAnswerCall This routine is not supported with Application Bridge Release 5.0.

ctcAbAssign Application Bridge Release 5.0 does not support channels assigned to
ACD groups or trunk groups.

ctcAbGetEvent and
ctcAbWinGetEvent

The following restrictions apply:

• Some events are not supported with Application Bridge Release
5.0. Refer to Tables 2–2, 2–3, and 2–4.

• The following ctcAbEventData structure fields do not return
information:

aniDigits
dnisDigits
agentId
agentGroup
agentMode

ctcAbHangupCall Application Bridge Release 5.0 does not supply a call reference
identifier for the call. This routine hangs up the current call.

ctcAbMakePredictiveCall This routine is not supported with Application Bridge Release 5.0.

ctcAbReassignResource This routine is not supported with Application Bridge Release 5.0.

ctcAbRetrieveHeld Application Bridge Release 5.0 does not support a call reference
identifier for the call. This routine retrieves the call currently on
hold.

ctcAbSetAgentStatus Application Bridge Release 5.0 does not support agent log in or log
out.

For more information, refer to the routine descriptions in Chapter 2.

viii

Audience
This manual is for programmers writing applications that use a link between
a CTC/AB server (a Windows NT™ PC running the CTC Server for Aspect
software) and an Aspect CallCenter to provide users at client systems with
computer-integrated telephony facilities.

This manual assumes that readers are familiar with:

• Writing programs in C

• Compiling and linking programs on the operating system(s) used by your
CTC/AB clients:

Windows NT
Windows™ 95
Windows 3.1/3.11 (or Windows for Workgroups 3.11)
Digital™ UNIX® (formerly DEC™ OSF/1™)
HP-UX®
SCO OpenServer™
OpenVMS™
OS/2 WARP™ Connect

You must also have an understanding of Aspect CallCenter programming (refer
to your Aspect CallCenter and Application Bridge documentation) and CTC/AB
networks. Chapter 1 provides an overview of CTC/AB systems and how they
are linked to the Aspect CallCenter.

Associated Documentation
CTC for Aspect Documentation
The following manuals are included in the CTC for Aspect documentation set:

• CT-Connect for Aspect Installation Guide

This manual describes how to install and configure the CTC Server for
Aspect and the CTC/AB API software.

• CT-Connect for Aspect Management Guide

This manual describes how to manage your CTC/AB network and provides
guidelines for finding and fixing problems.

• CT-Connect for Aspect DDE Interface

This online help describes how CTC/AB provides support for Dynamic Data
Exchange (DDE). For details, refer to the CT-Connect for Aspect Installation
Guide.

ix

• CT-Connect for Aspect Release Notes

These online notes provide information about changes to the CTC/AB
software and/or documentation at the time of release. Read the release
notes before using the software.

Aspect Documentation
Refer to the Aspect CallCenter and Aspect Application Bridge documentation
for details of features and any limitations that any affect the operation of the
CTC/AB software.

Terms and Definitions
The following terms are used throughout this manual:

Term Definition

OpenVMS Refers to the OpenVMS VAX™ and OpenVMS Alpha operating
systems.

Windows 3.1/3.11 Refers to Microsoft Windows 3.1, Windows 3.11, and Windows for
Workgroups 3.11.

OS/2® Refers to OS/2 WARP Connect.

CTC/AB Refers to CTC for Aspect.

CTC/AB client A system running the CTC/AB API software.

CTC/AB server A Windows NT personal computer running the CTC Server for
Aspect software.

Communications
link

The logical link between the CTC/AB server and the Aspect
CallCenter.

x

Conventions
The following conventions are used throughout this manual:

Convention Meaning

courier This typeface is used for code examples or interactive examples to
indicate system input/output.

drive: Italic (slanted) typeface indicates variable values, placeholders and
function arguments.

C:\> The MS–DOS® and OS/2 command prompt. The actual prompt may
vary depending on your current drive and default directory.

The Digital UNIX, HP-UX, and SCO OpenServer command prompt.

$ The OpenVMS command prompt.

xi

1
Programming Overview

This chapter provides a general introduction to the functions provided by the
CTC/AB software and describes how to call CTC/AB routines.

1.1 Overview of CTC for Aspect
CTC/AB is a software toolkit for developing and running telephony
applications. These applications create logical channels to telephony devices,
for example, Aspect TeleSets, so that incoming and outgoing calls at the device
can be controlled and call data monitored.

The logical channels are created over a CTC/AB communications link to an
Aspect CallCenter running Application Bridge software.

1.1.1 CTC/AB Communications Link
Figure 1–1 shows an example hardware and software configuration of a
CTC/AB network and the CTC/AB communications link.

A CTC/AB application must run on a CTC/AB client, one of the following
systems running the CTC/AB API software:

Windows NT
Windows 95
Windows 3.1/3.11
Digital UNIX
HP-UX
SCO OpenServer
OpenVMS
OS/2

CTC/AB clients pass requests to, and receive information from, the
CTC/AB server (a Windows NT PC running the CTC Server for Aspect
software). The CTC/AB server acts as an intermediary, passing messages
between the CTC/AB clients and the Aspect CallCenter.

Programming Overview 1–1

Figure 1–1 Example CTC/AB Network

Aspect
Communications

Link

Local Area Network (LAN)

CallCenter

Aspect
TeleSets CTC/AB clientCTC/AB client

CTC/AB
server

1.1.2 Using Logical Channels
A logical channel from the CTC/AB application to a device enables the
application to perform telephony functions and make use of call data and
party information:

• A channel to a station or TeleSet enables the application to perform basic
call processing and telephony functions usually accessed through the
station or TeleSet, and receive call data and party information.

• A channel to a trunk enables the application to perform call processing
(for example, deflect calls to another destination) and receive call data and
party information for the trunk.

• A channel to an ACD group enables the application to make predictive
calls on behalf of the group. It also enables your application to receive
additional call data on channels assigned to TeleSets in the ACD group.

• A channel to a trunk group enables the application to receive additional
call data on channels assigned to trunks in the trunk group.

• A channel to an InterQueue point enables the application to monitor calls
that the CallCenter receives from other Aspect CallCenters in the same
network.

• A channel to a monitor channel enables the application to receive
information for a number of devices on one channel. Section 1.1.3 describes
monitor channels.

1–2 Programming Overview

1.1.3 Monitor Channels
A monitor channel is a single channel that your application can use to monitor
multiple devices. By assigning to a monitor channel, your application can
receive on one channel call data, status, and party information for a number
of devices. Your application can use this information, for example, to record
statistics for a specific group of TeleSet users.

Note that your application cannot use a monitor channel to control calls to
devices or to set device features. You must assign logical channels to individual
devices for call and feature control.

1.2 Introduction to CTC/AB Routines
CTC/AB routines can be grouped according to the following functions:

• Control of the communications channel

• Telephony functions

1.2.1 Controlling the Communications Channel
This group of routines gives you control of the communications channel
between the user’s process and a specified telephony device, allowing you to:

• Assign and deassign logical communications channels to and from a device

• Set and query certain characteristics for a device

• Monitor calls associated with a device

• Monitor telephony events on a channel

1.2.1.1 Routines That Control the Communications Channel
Table 1–1 lists the functions available to give you control of the communica-
tions channel, and the routines that provide those functions.

Programming Overview 1–3

Table 1–1 Controlling the Communications Channel

Function Routine

Assign a communications channel to a device and
identify the channel uniquely to the application, or
assign a monitor channel so that the application
monitors a number of devices on a single channel.

ctcAbAssign

Set monitoring on for a device so that information
about that device is returned on a monitor channel.

ctcAbAddMonitor

Stop monitoring a device on a monitor channel. ctcAbRemoveMonitor

Deassign a channel from its associated device, and
release resources associated with the channel.

ctcAbDeassign

Change the group, team, or Class Of Service (COS) for
an agent

ctcAbReassignResource

Return information about the communications channel
and the device to which the channel is assigned.

ctcAbGetChannelInformation

Declare the status of an agent by simulating the
function keys on an Aspect TeleSet.

ctcAbSetAgentStatus

Set the monitoring state of the assigned device on or
off. Use this routine with the ctcAbGetEvent routine
to receive information on the state of calls associated
with a device.

ctcAbSetMonitor

Return the monitoring state of the assigned device. ctcAbGetMonitor

Return information on telephone calls associated with
the assigned device. Depending on the type of call,
you can receive information on:

• Call events

• Other parties involved in the telephone call

ctcAbGetEvent and
ctcAbWinGetEvent

Return information about condition values. ctcAbErrMsg

1.2.1.2 Sequence for Calling the Routines
Call the routines in the following sequence:

1. ctcAbAssign to assign the channel to a device.

2. ctcAbSetMonitor to set monitoring on for that channel.

3. ctcAbGetEvent or ctcAbWinGetEvent to monitor the channel and device
while the application is making and receiving calls.

1–4 Programming Overview

1.2.2 Telephony Functions
Table 1–2 lists the telephony functions provided by the CTC/AB API on a
channel assigned to a device, and the routines that perform those functions.

Table 1–2 Telephony Functions

Telephony Function Routine

Make a telephone call from the device to which the
channel is assigned.

ctcAbMakeCall

Answer an incoming call on a hands-free feature
telephone.

ctcAbAnswerCall

Clear the active call on the assigned device. ctcAbHangupCall

Place a call on the assigned device on hold. ctcAbHoldCall

Transfer an active call to a third party, disconnecting the
assigned device.

ctcAbSingleStepTransfer

Make a call to a third party to whom you intend to
transfer the current call on the assigned device, or to
include all parties in a conference call.

ctcAbConsultationCall

Complete a transfer call initiated by ctcAbConsultation-
Call, and disconnect the assigned device.

ctcAbTransferCall

Merge two or more calls into a single conference call. ctcAbConferenceJoin

Cancel a consultation call and retrieve the held call. ctcAbRetrieveHeld

Provide call path information for call routing. ctcAbDeflectCall

Allow a virtual party on a switch to initiate calls on
behalf of a user. Only when the called device answers,
(or, for example, the telephone rings a preconfigured
number of times) does the call get put through to the
user.

ctcMakePredictiveCall

For more information about these routines, refer to Chapter 2.

1.3 Format of Routines
Each routine description in Chapter 2 shows the format of the routine written
in C. The descriptions also provide details of any message returned by the
Application Bridge, and include a summary of the arguments passed to the
routine.

Arguments passed to a routine must be listed in your program in the same
order as that shown in the format section.

Programming Overview 1–5

1.3.1 Unsigned Integers and Windows 3.1/3.11
With the exception of ctcErrMsg, the format section for each routine in
Chapter 2 shows the routine status return as a 32-bit unsigned integer. On
Windows 3.1/3.11 this is the equivalent of an unsigned longword, but, for
simplicity, Chapter 2 shows status returns and arguments as unsigned integers
only.

If you are writing a Windows 3.1/3.11 program, use unsigned longwords
wherever the format section or argument for a routine requires a 32-bit
unsigned integer.

1.4 Application Bridge Messages
For some routines, CTC/AB passes message requests to the Application Bridge.
Each routine description includes a section that describes any messages that
the Application Bridge returns in response to a request.

For example, when you use ctcAbAssign to assign a channel to a TeleSet,
CTC/AB sends an Equipment Status Request to the Application Bridge
to check that the TeleSet equipment number is valid and logged in. The
Application Bridge returns an Equipment Status Request Response message
to verify that the TeleSet is valid. Details of this message are included in the
description of ctcAbAssign.

For more information about Application Bridge messages, refer to your Aspect
Application Bridge documentation.

1.5 Use of Arguments
The Arguments section of a routine description describes the use of each
argument. Each argument has three characteristics: data type, access type,
and passing mechanism.

1.5.1 Data Type
When a calling program passes an argument to a CTC/AB routine, the routine
expects the argument to be of a particular data type. The type entry indicates
the type of data used for an argument. This can be:

• Byte (unsigned)—8 bits

• Word (unsigned)—16 bits

• Integer (unsigned)—32 bits

• Character string (unsigned)

• Structure

1–6 Programming Overview

• ctcChanId

The structure and ctcChanId data types are described in the following
subsections.

Data Structures
Some CTC/AB arguments are addresses of data structures. A data structure
is a block of memory that contains a series of fields of predefined offsets. Each
of these structures has a fixed format defined in a CTC/AB definitions file
installed on your system (see Section 1.6 for more information about definitions
files).

There are two types of structure:

• An input structure requires the application to pass information to the
CTC/AB API for one or more of the defined fields. For example, to create
a channel to a TeleSet, the ctcAbAssign routine requires the application
to provide the equipment number for the TeleSet. CTC/AB has read-only
access to the content of an input structure.

• Output structures are used to provide the application with information.
The application program passes to CTC/AB the address of a block of
memory for the structure. CTC/AB writes information into the structure
for the application to read. CTC/AB has write-only access to the content of
an output structure.

ctcChanId Data
The ctcChanId datatype is defined in one of the CTC/AB definitions files
installed on your system (see Section 1.6). It contains the channel identifier
returned by the ctcAbAssign routine for the device in use.

1.5.2 Access to Data
The access entry indicates whether the CTC/AB routine:

• Reads data passed to it by the application (read only)

• Returns data to the application (write only)

• Reads data from the application and returns data to the application (read
and write)

Programming Overview 1–7

1.5.3 Passing Mechanism
The mechanism entry indicates whether the application passes data to the
CTC/AB routine by value or by reference:

• By Value

When your program passes an argument by value, the argument entry
contains the actual, uninterpreted value of the argument. The by value
mechanism is usually used to pass constants. For example, to pass the
constant 100 by value, the calling program puts 100 directly into the
argument list.

• By Reference

When your program passes an argument by reference, the argument
entry contains the address of the location that contains the value of the
argument. For example, if variable x is allocated at location 2000, which
currently contains the value 100, the argument entry will contain 2000.

1.5.4 Optional Arguments
Some routine arguments are "optional". This means that you still include the
argument in your program but, depending on the passing mechanism, you can
specify the value zero (0) or the address of a zero-length character string with
the argument instead of data.

The way that you use an optional argument depends on the passing mechanism
for the argument:

• If the argument is passed by value, specify zero (0) instead of the described
value.

• If the argument is passed by reference and provides input to CTC/AB,
specify the address of a null data type, for example, a zero-length character
string.

• If the argument is passed by reference and obtains output from CTC/AB,
supply enough memory to accommodate that argument’s output.

To find out if an argument is optional, refer to the routine descriptions in
Chapter 2.

1–8 Programming Overview

1.6 Definitions
During the CTC/AB API installation procedure, CTC/AB copies a definitions
file, ctabdef.h, to your system for you to include in your C program. This file
includes the following definitions files for condition values, constants, and data
structures:

Definitions Files

Condition values
for status returns

ctaberr.h,
ctc_err.h

Constants ctabcod.h,
ctc_code.h

Data Structures ctabrpc.h,
ctc_rpc.h

ctabw16.h

(Windows NT, Windows 95, Digital UNIX, HP-UX,
SCO OpenServer, OpenVMS, OS/2)

(Windows 3.1/3.11)

The file ctabdef.h and the definition files that it includes are copied to the
directory specified during installation. For more information, refer to the
CT-Connect for Aspect Installation Guide.

1.7 Constants
CTC/AB constants have one of the following prefixes:

This prefix... Is used for...

ctcK_ Literals. For example, the value ctcK_AgentReady can be specified
with the agentMode argument for the ctcAbSetAgentStatus routine
to indicate that the agent is ready to take calls.

ctcM_ Masks. These are used to indicate whether an option (such as
a function or event) is supported or used. For example, the
value ctcM_Assign can be returned in the procedureSupport
field of the ctcAbChanData structure. (See the description of the
ctcAbGetChannelInformation routine for more information.)

1.8 Errors and Condition Values
Each routine returns a condition value (32-bit unsigned integer) as a
completion code to indicate whether the call to the routine has been successful
or whether an error has occurred.

Programming Overview 1–9

Dialogic recommends that you always check the return status to determine
success or failure of calls to CTC/AB routines, and choose a suitable recovery
path if there is an error.

For an explanatory list of the condition values and errors that can be returned
by CTC/AB routines, refer to Chapter 3.

1.8.1 Link Problems
If the link between the Aspect Aspect CallCenter and CTC/AB server fails, the
CTC/AB server:

• Returns a ctcLinkDown or ctcLinkReset condition value.

• Clears all monitors and cancels any outstanding ctcAbGetEvent or
ctcAbWinGetEvent requests.

• Deassigns all channels to devices.

1.9 Exception Handling
Any severe network problem that affects communication between the
CTC/AB client and CTC/AB server may result in a software exception. If
you want to handle this type of exception, refer to the Remote Procedure Call
(RPC) programming documentation for your operating system.

1.10 Calling CTC/AB Routines
All CTC/AB routines operate synchronously. This means that they return to
the caller only when the operation is complete.

Waiting for each operation to complete may be inappropriate for your
application. For example, your application can use the ctcAbGetEvent
routine to return information on telephone calls associated with the assigned
device. This routine does not complete until there is activity on the assigned
device. For your application to continue with operations, you must call the
routines in a multithreaded program.

Multithreaded programming enables routines to be processed concurrently
rather than in sequence. This means that applications are not blocked as they
wait for operations to complete; operations that are asynchronous in nature
can be performed in parallel with operations that are synchronous.

1–10 Programming Overview

1.11 CTC/AB and Multithreaded Programming
This section provides an overview of threads and multithreaded programs for
applications that require both synchronous and asynchronous operations.

Note that you do not need to create a multithreaded program if:

• Your application uses only synchronous operations.

• You are writing a CTC/AB application on a system running Windows
3.1/3.11 or Windows for Workgroups.

These CTC/AB clients use a Windows Socket interface for CTC/AB
API calls (all other CTC/AB client systems use Distributed Computing
Environment (DCE) RPC services). Refer to Section 1.12 for more
information.

1.11.1 Threads
A thread is a separate, sequential flow of control within a program. It is the
movement of a processor through a program’s instructions.

1.11.2 Multithreaded Programming
Most traditional programs consist of a single thread. In a multithreaded
program, multiple threads are created to execute different parts of a program.
This enables a program to overlap activities.

Threads in a multithreaded program share the address space, memory (except
for stacks and register contents), and other resources provided by a single
process. When the process is created, a single thread is created and used by
the program. This is the main thread. From this thread, the program can
create another thread, for example, for an operation that needs to wait for
input from another device. It continues to perform more immediate work using
the main thread.

If the program has a number of slow operations to perform, it can create
additional threads from the main thread as they are required.

1.11.3 Thread Execution
A processor executes a thread until the thread has to wait for a resource to
become available, for example, or for synchronization with another thread. At
this point, the processor starts to run another thread. The processor continues
in this way, executing one thread and then another.

Programming Overview 1–11

No complicated data-passing mechanisms are required for one thread to
communicate with another thread. A thread writes its output to memory and
another thread can read it as input. When one thread has completed a task, it
uses an indication mechanism (for example, a conditional variable) to let the
other thread know that the input data is ready.

1.11.4 Using Multithreaded Programming with CTC/AB
Using multithreaded programming, a CTC/AB application can complete both of
the following activities:

• It can use the main thread (the thread created at the same time as
the process) for all synchronous operations. For example, calling the
ctcAbMakeCall routine.

• It can create another thread for monitoring the device. For example, for
calling the ctcAbGetEvent routine which returns information only when
there is call activity. Dialogic recommends that you create a separate
thread for this routine.

An online programming example (CTABCP.EXP) is provided as part of the
CTC/AB API kit. This example shows how multithreaded programming is
used. For details of its location, refer to the CT-Connect for Aspect Installation
Guide.

1.11.5 Creating a Multithreaded Program
The procedure for creating threads in your program depends on the operating
system you are using. For some operating systems, you may need to obtain a
threads package.

For information about creating and using threads, refer to the application
development documentation for your operating system:

• On a Windows NT or Windows 95 system, refer to the development
documentation provided with your system. Threads are provided as part of
the operating system for these platforms.

• On Digital UNIX and OpenVMS systems, you can use the DCE Thread
Library routines. These routines are described in the Digital DCE
Application Development Reference manual.

• On HP-UX systems, you can use DCE Thread Library routines. For more
information, refer to the documentation provided with the HP® DCE
Runtime Services software.

• On SCO OpenServer systems, you can use DCE Thread Library routines.
For more information, refer to the documentation provided with the SCO®
DCE Executive software.

1–12 Programming Overview

• On OS/2 systems, you can use DCE Thread Library routines. For more
information, refer to the documentation provided with the IBM® DCE for
OS/2 WARP software.

1.12 Using the CTC/AB Windows Socket Interface
The CTC/AB Windows Socket interface is installed with the CTC/AB
API software on systems running Windows 3.1/3.11. It enables CTC/AB
applications running on these systems to use ctcAbWinGetEvent, a non-
blocking routine that returns information for the assigned device. See the
description of ctcAbWinGetEvent for more information.

Note that the ctcAbWinGetEvent routine is available for systems running
Windows 3.1/3.11 or Windows for Workgroups only. If you are writing a
Windows NT or Windows 95 application, call ctcAbGetEvent in a multithreaded
program.

1.13 Compiling and Linking Your Program
Sections 1.13.1 to 1.13.5 contain platform-specific information about compiling
and linking your program.

1.13.1 Windows NT and Windows 95 Clients
Before you compile and link your program on a Windows NT or Windows 95
system, note the information in the following sections.

Multithreaded Programs and Thread Stack Size
If you create threads for the ctcAbGetEvent routine in your program, note the
following:

• On Windows NT systems, Dialogic recommends that you use a thread stack
size of no more than 64 Kbytes when you link your program. The default
thread stack size on Windows NT systems is 1 Mbyte.

• On Windows 95 systems, if you encounter problems with virtual memory,
try reducing the thread stack size when you link your program. For more
information, refer to your Windows 95 documentation.

Programming Overview 1–13

Paths
During the CTC/AB API installation, the following paths are added to the
AUTOEXEC.BAT file on your PC:

drive:\directory\lib
drive:\directory\include
drive:\directory\bin

where drive:\directory is the drive and directory used for the CTC/AB API
installation. By default, this is C:\DIALOGIC\CTCAB.

These paths define the location of the CTC/AB API library and definitions files.

1.13.2 Windows 3.1/3.11 Client
Dialogic recommends that when you compile a CTC/AB program on a system
running Windows 3.1/3.11, you:

• Check that the following header files are copied to your INCLUDE
directory:

CTABDEF.H
CTABCOD.H
CTABW16.H
CTABERR.H
CTC_CODE.H
CTC_ERR.H

• Use the large memory model.

You can link your program using one of the following methods:

• Implicit Import—This gives you access to all the CTC/AB routines by
including the import library in the linker command.

• Dynamic Run-Time Import—This allows access to only the routines you
specify within your application code.

Implicit Import
To link your application with the CTC/AB API copy the import library
CTABAPI.LIB to your library directory and include it in the linker command
file. For example:

link /NOD/CO ctcapp.obj,,ctcapp.map/map,libw llibcew
ctabapi.lib,ctcapp.def

1–14 Programming Overview

Dynamic Run-Time Import
Dynamic Run-Time Import eliminates the need for you to link your program
with the CTC/AB import library. Your application first loads the import library,
and then retrieves the address of the CTC/AB functions you specify.

For example, to call the ctcAbHangupCall routine:

HANDLE hLibrary;
FARPROC lpFunc;

hLibrary = LoadLibrary ("CTABAPI.DLL");
if (hLibrary >= 32)

{
lpFunc = GetProcAddress (hLibrary, "ctcAbHangupCall");
if (lpFunc !=(FARPROC)NULL)

(*lpFunc) (hChan);
FreeLibrary (hLibrary);
};

1.13.3 Digital UNIX Client
On a CTC/AB client running Digital UNIX, the CTC/AB API is provided as the
shareable object, /usr/shlib/libctabapi.so. You include this shareable object as
input when you link your program to create an executable image.

To compile your program, you use the cc -c command. For example:

#cc -c ctabprog.c

where ctabprog.c is source code written in C.

To link your program, you use the cc command and -l to specify the shareable
object, dce, pthreads, c_r, and mach objects. For example:

cc -o ctabprog ctabprog.o -lctabapi -ldce -lpthreads -lc_r -lmach

where ctabprog is the executable image and ctabprog.o is the compiled
program.

1.13.4 HP-UX Client
On a CTC/AB client running HP-UX, the CTC/AB API is provided as the
shareable object, libctabapi.sl. You include this shareable object as input when
you link your program to create an executable image.

For example, to compile a program written in C, you use:

#cc -c -o ctabprog.o -Ae +O4 -I/usr/include/reentrant \
-D_REENTRANTctabprog.c

where ctabprog.o is the name you give to the output (the compiled program)
and ctcabprog.c is source code written in C.

Programming Overview 1–15

To link a program written in C, you use:

ld ctcabprog.o /lib/crt0.o -o ctabapp -s -Bimmediate -Bnonfatal -lctabapi \
-ldce -lm -lc_r

where ctabprog.o is the compiled program and ctabapp is the executable image.

1.13.5 SCO OpenServer Client
To compile your program on a CTC/AB client running SCO OpenServer, you
use:

cc -c -o ctabprog.o -belf ctabprog.c

where ctabprog.o is the name you give to the output (the compiled program)
and ctabprog.c is source code written in C.

To link your program, you use:

#ld ctabprog.o /lib/crt0.o -o ctabapp -s -lctabapi -ldce -lcma -lm \
-lsocket -lc

where ctabprog.o is the compiled program and ctabapp is the executable image.

1.13.6 OpenVMS Client
On a CTC/AB client running OpenVMS, the CTC/AB API is provided as the
shareable image, SYS$SHARE:CTABAPI.EXE. You include this shareable
image as input to the linker.

Compile your program in the usual way and then complete the following
procedure to link your image:

1. Create an options file that contains the following:

SYS$SHARE:CTABAPI.EXE/SHAREABLE

Identify the Run-Time Library shareable image in the options file. For
example:

SYS$SHARE:CTABAPI.EXE/SHAREABLE
SYS$SHARE:VAXCRTL.EXE/SHAREABLE

where VAXCRTL.EXE is the shareable image for the VAX C Run-Time
Library.

For more information, refer to your programming utilities documentation.

1–16 Programming Overview

2. Use the LINK command to link your image:

$ LINK ctab_program , filename .OPT/OPTION, DCE:DCE.OPT/OPTION

where ctab_program is the name of your compiled program and
filename.OPT is the name of your options file. DCE.OPT is the DCE
options file.

1.13.7 OS/2 Client
The following is an example command used to compile a program on a CTC/AB
client running OS/2 WARP Connect:

icc ctabprog.c /Gm+ /Su4 /Ms /C+ /Sem -D_CMA_PROTO_ -D_CMA_NOWRAPPERS_
-DCMA_UNIPROCESSOR -DINTEL80x86 -DIBMOS2

where ctabprog.c is source code written in C. This produces a compiled program
ctabprog.obj.

The following example shows how to link the CTC/CMP program:

ilink ctabprog.obj /E /NOI /NOE /ST:100000 /O:ctabprog ctabapi.lib
dceos2.lib os2386.lib

where ctabprog.obj is the compiled program and ctabprog is the executable
image.

Programming Overview 1–17

2
Routine Specifications

This chapter provides detailed specifications of the CTC/AB routines in
alphabetical order.

2.1 Aspect Application Bridge Messages
The descriptions of the routines in this chapter indicate how to invoke the
Aspect Application Bridge messages and responses through CTC/AB. For full
details of the Aspect Application Bridge and the Aspect Call Control Table
(CCT) facility, refer to your Aspect Application Bridge documentation.

2.2 Application Bridge Software Releases
CTC/AB routines can be used with Aspect Application Bridge Release 5.0 and
Release 6.0 unless otherwise stated. Any differences between releases that
affect CTC/AB functionality are noted in this chapter.

Routine Specifications 2–1

ctcAbAddMonitor

ctcAbAddMonitor
Adds a Device to a Monitor Channel

Format in C

unsigned int ctcAbAddMonitor (ctcChanId channel,
struct ctcAbAssignData *assignData)

Description

The ctcAbAddMonitor routine sets monitoring on for a device and associates it
with a monitor channel. A monitor channel is a single channel used to monitor
multiple devices so that all event information is returned on the monitor
channel.

You can monitor the following devices on a monitor channel:

• Station

• TeleSet

• ACD group

• Trunk

• Trunk group

• InterQueue point

• Monitor channel

Monitoring a Device on a Monitor Channel
To set up a monitor channel, you use the following routines:

1. ctcAbAssign to create a monitor channel

2. ctcAbAddMonitor for each device you want to monitor on the monitor
channel

3. ctcAbGetEvent to return information on the monitor channel

Monitoring Another Monitor Channel
To monitor another monitor channel, use the ctcAbGetChannelInformation to
obtain a device number for the monitor channel (returned in the setDN field
of the ctcAbChanData structure) and specify this as the deviceDN with the
assignData argument.

2–2 Routine Specifications

ctcAbAddMonitor

Note that:

• You can only use one level of nested monitoring for monitor channels.
This means that you cannot monitor a monitor channel if that channel is
alreading monitoring another monitor channel.

• A monitor channel cannot monitor itself.

Removing Monitoring for a Device
To stop monitoring a device on the monitor channel, you use ctcAbRemove-
Monitor. For more information, see the description of the ctcAbRemoveMonitor
routine.

Restrictions

The following restrictions apply for ctcAbAddMonitor:

• This routine is supported for channels assigned to monitor channels only.

• To monitor ACD groups and trunk groups on a monitor channel, Aspect
Application Bridge Release 6.0 is required.

• ctcAbAddMonitor is not supported on CTC/AB clients running Windows
3.1/3.11. CTC/AB applications running on Windows 3.1/3.11 cannot assign
to monitor channels.

• If you are monitoring a number of devices on the monitor channel and
activity on each device is high, a number of events may occur at the same
time. In this situation, it is possible for the CTC/AB server to lose an event
message and return a ctcEventDataLost error.

To avoid losing event data when monitoring high-activity devices, Dialogic
recommends you create more than one monitor channel.

Aspect Application Bridge Message

None.

Routine Specifications 2–3

ctcAbAddMonitor

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the monitor channel.

You use this argument to identify the monitor channel that will be used for
monitoring the device.

The ctcChanId datatype is defined in a CTC/AB definitions file (see
Section 1.6).

assignData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which
you allocate memory of type ctcAbAssignData. The structure is defined in a
CTC/AB definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbAssignData {
unsigned short deviceType;
unsigned char APIversion;
unsigned char spare;
unsigned char deviceDN [ctcMaxDnLen];

}

The following sections describe the ctcAbAssignData fields.

deviceType
This 16-bit field identifies the type of device you are assigning to the monitor
channel. Specify one of the values in the following table:

2–4 Routine Specifications

ctcAbAddMonitor

Specify this value... To monitor...

ctcK_Station A station
ctcK_Teleset A TeleSet
ctcK_AcdGroup An ACD group†
ctcK_Trunk A trunk
ctcK_TrunkGroup A trunk group†
ctcK_InterQueue An InterQueue point
ctcK_MonitorChannel A monitor channel

†Aspect Application Bridge Release 6.0 is required for this device type.

APIversion
This 8-bit field identifies the version of CTC/AB API software used.
ctcAbAddMonitor does not use the information in this field. Specify the value
zero.

deviceDN
This 24-byte field identifies the device to be monitored on the monitor channel.
Specify one of the following:

For this type of device... Specify...

Station Equipment number
TeleSet Equipment number
Trunk Trunk number
ACD group Group number
Trunk group Group number
InterQueue point InterQueue request number
Monitor channel The setDN value returned by the routine

ctcAbGetChannelInformation. See the description of
this routine for more information.

This ASCII string that can contain any combination of numbers 0 through 9
and the characters * and #. The maximum length for deviceDN is specified by
the literal ctcMaxDnLen in a CTC/AB definitions file (see Section 1.6). Note
that this maximum length includes the null termination character (NUL).

Routine Specifications 2–5

ctcAbAnswerCall

ctcAbAnswerCall
Answer a Call

Format in C

unsigned int ctcAbAnswerCall (ctcChanId channel,
unsigned int callRefId)

Description

When CTC/AB notifies your application that there is an incoming call on the
assigned TeleSet, you can use the ctcAbAnswerCall routine to answer that call.

CTC/AB notifies you of an incoming call only if both of the following conditions
apply:

1. You have set monitoring on, using ctcAbSetMonitor.

2. You are using the ctcAbGetEvent or ctcAbWinGetEvent routine, which
indicates a change in state to receive (ringing).

The call reference identifier for the incoming call is returned by ctcAbGetEvent
or ctcAbWinGetEvent.

When the call is put through, the agent can speak to the caller using hands-
free operation on a speakerphone TeleSet. ctcAbAnswerCall cannot be used
with standard telephones.

Restrictions

The following restrictions apply:

• This routine is supported for channels assigned to TeleSets only.

• Aspect Application Bridge Release 6.0 is required to support this routine.

Aspect Application Bridge Message

Answer Call Request (ACR)

CTC/AB sends an ACR to request that the Aspect CallCenter answers the call
associated with the specified TeleSet. For full details of this message, refer to
the Aspect Application Bridge documentation.

2–6 Routine Specifications

ctcAbAnswerCall

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

The ctcChanId datatype is defined in a CTC/AB definitions file (see
Section 1.6).

callRefId
type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains the call reference identifier
for the incoming call. Specify the call reference identifier returned by
ctcAbGetEvent or ctcAbWinGetEvent for the incoming call.

Routine Specifications 2–7

ctcAbAssign

ctcAbAssign
Assign a Channel

Format in C

unsigned int ctcAbAssign
(ctcChanId *channel,
struct ctcAbAssignData *assignData,
unsigned char serverName [ctcNodeNameLen],
unsigned char logicalIdentifier [ctcLogIdLen],
unsigned char networkType [ctcNetLen])

Description

Before a device (for example, a TeleSet next to a user’s PC) can be linked
to a CTC/AB network, the device and the communications channel must be
uniquely identified to CTC/AB by your application.

The ctcAbAssign routine assigns a logical communications channel between the
application, the CTC/AB server, and the specified device, and then returns an
identifier (ID) for that channel.

Use ctcAbAssign to assign a channel to the following:

• Station (administrative telephone, or auxiliary device such as an
Interactive Voice Response (IVR) unit)

• TeleSet

• ACD group (also known as agent group or queue)

• Trunk

• Trunk group

• InterQueue point

• Monitor channel

When to Use ctcAbAssign
You must use the ctcAbAssign routine before any of the other CTC/AB routines
so that you know the channel ID associated with a device. All subsequent
routines that you invoke for the device require you to specify that channel ID.

You need assign a channel only once for each user session; that is, you do not
have to assign and deassign the channel for each telephone call a user makes
from a particular TeleSet.

2–8 Routine Specifications

ctcAbAssign

Assigning Channels to ACD Groups or Trunk Groups
Application Bridge Release 6.0 provides additional event information for
TeleSets and trunks (see Tables 2–2, 2–3, and 2–4). Assigning a channel to an
ACD group or trunk group enables your application to receive this information.

For example, to receive Application Bridge Release 6.0 events for the TeleSets
in an ACD group, you:

1. Assign a channel to the ACD group

2. Assign a channel to each TeleSet in the ACD group

You need assign to the ACD group only once for each group of TeleSets. The
additional events are returned on the channels to the TeleSets.

InterQueue Points
If your Aspect CallCenter is part of a network of CallCenters, you can monitor
calls that it receives from another CallCenter by assigning a channel to an
InterQueue.

A Network InterQueue is a virtual channel used to notify a CallCenter that it
will receive a call from another CallCenter in the network. When the target
CallCenter receives this notification, it processes it as if the call had already
been presented. For example, it can respond with an Application Bridge Call
Information Message (CIM) or Call Track Information Message (CTIM). At the
same time, it negotiates receipt of the call over a real trunk.

When negotiation is complete, the call is sent over the trunk and, depending
on the Call Control Table (CCT) used to process the call, another CIM or CTIM
may be generated. If not, it may appear that only a Call Connect Message
(CCM) has been generated for the call on that trunk.

Monitor Channels
If you need to monitor a number of devices, you can use ctcAbAssign to create
a single monitor channel that receives all events for the devices. For example,
your application can create one channel to receive event information for all
TeleSets in an office, building, or for a particular group.

To set up a monitor channel, you use the following sequence of routines:

1. ctcAbAssign to assign a monitor channel

2. ctcAbAddMonitor for each device you want to monitor on the monitor
channel

3. ctcAbGetEvent to return information for all devices associated with the
monitor channel

Routine Specifications 2–9

ctcAbAssign

Note that you do not need to use ctcAbSetMonitor in this sequence to enable
monitoring for the device; when you use ctcAbAddMonitor, monitoring is
automatically enabled.

Supported Devices and Routines
Table 2–1 shows which routines are supported by each type of device.

Note that a user process is not given exclusive access to a device; it is possible
for more than one channel to be assigned to the same device.

Restrictions

To assign a channel to a trunk group or ACD group, Aspect Application Bridge
Release 6.0 is required.

Aspect Application Bridge Messages

Equipment Status Request (ESR)
Event Monitor Request (EMR)

• If you assign to a station, TeleSet, or trunk, CTC/AB sends an ESR to the
Application Bridge. An Equipment Status Request Response (ESRR) is
returned by the Application Bridge to verify that the specified number is
valid. The application is then free to call other routines.

• If you assign to an ACD group or trunk group, CTC/AB sends an EMR to
the Application Bridge.

• If you assign to an InterQueue point or monitor channel, no Application
Bridge message is returned.

For full details of the ESR and EMR messages, refer to the Aspect Application
Bridge documentation.

2–10 Routine Specifications

ctcAbAssign

Table 2–1 Routines Supported by Device Type

Station TeleSet
ACD
Group Trunk

Trunk
Group InterQueue

Monitor
Channel

ctcAbAddMonitor X

ctcAbAnswerCall X

ctcAbAssign X X X X X X X

ctcAbConferenceJoin X

ctcAbConsultationCall X

ctcAbDeassign X X X X X X X

ctcAbDeflectCall X X

ctcAbErrMsg X X X X X X X

ctcAbGetChannelInformation X X X X X X X

ctcAbGetEvent X X X X X X X

ctcAbGetMonitor X X X X X X

ctcAbHangupCall X X X

ctcAbHoldCall X

ctcAbMakeCall X X

ctcAbMakePredictiveCall X

ctcAbReassignResource X

ctcAbRemoveMonitor X

ctcAbRetrieveHeld X

ctcAbSetAgentStatus X

ctcAbSetMonitor X X X X X X

ctcAbSingleStepTransfer X X X

ctcAbTransferCall X

ctcAbWinGetEvent X X X X X X

Routine Specifications 2–11

ctcAbAssign

Arguments

channel
type: ctcChanId
access: write only
mechanism: by reference

This argument is a pointer that receives the address of a ctcChanId
datatype. The ctcChanId datatype is defined in a CTC/AB definitions file
(see Section 1.6).

The channel ID is the value used by the other CTC/AB routines to identify the
device they are using.

assignData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which
you allocate memory of type ctcAbAssignData. The structure is defined in a
CTC/AB definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbAssignData {
unsigned short deviceType;
unsigned char APIversion;
unsigned char spare;
unsigned char deviceDN [ctcMaxDnLen];

}

The following sections describe the ctcAbAssignData fields.

2–12 Routine Specifications

ctcAbAssign

deviceType
This 16-bit field identifies the type of device to which the channel is assigned.
Specify one of the values in the following table:

Specify this value... To assign a channel to...

ctcK_Station A station
ctcK_Teleset A TeleSet
ctcK_AcdGroup An ACD group†
ctcK_Trunk A trunk
ctcK_TrunkGroup A trunk group†
ctcK_InterQueue An InterQueue point
ctcK_MonitorChannel A monitor channel

†Aspect Application Bridge Release 6.0 is required to support this device type.

APIversion
This 8-bit field identifies the version of the CTC/AB API software used. This
ensures compatibility with previous and new versions of the CTC/AB software
when you compile your application. Specify one of the following values in the
APIversion field:

Value Description

ctcK_AbCtcV11 Specify this value if you are writing a CTC/AB
application for use only with Version 1.1 of the CTC
/AB API software.

ctcK_AbCurrentVersion Specify this value and your application will be
compatible with the current version of the CTC/AB
API installed on your CTC/AB client system. When
you upgrade to a future version of the CTC/AB API,
your application will automatically gain access to
any new events provided as part of that version.

To ensure future compatibility, Dialogic recommends you use
ctcK_AbCurrentVersion.

Routine Specifications 2–13

ctcAbAssign

deviceDN
Use this 24-byte field to specify the telephone number for the device.

For this type of device... Specify...

Station Equipment number
TeleSet Equipment number
Trunk Trunk number
ACD group Group number
Trunk group Trunk number
InterQueue point InterQueue request number
Monitor channel The address of a zero-length character string.

This ASCII string that can contain any combination of numbers 0 through 9
and the characters * and #. The maximum length for deviceDN is specified by
the literal ctcMaxDnLen in a CTC/AB definitions file (see Section 1.6).

Note that if the number is longer than ctcMaxDnLen (excluding the null
termination character (NUL)), CTC/AB returns a ctcInvDevice condition value.

serverName
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that identifies the
CTC/AB server. The string can contain the name or address for the
CTC/AB server.

For example, on a CTC/AB client running Windows 3.1/3.11, this string can
contain the TCP/IP host name or IP address for the CTC/AB server. On
an OpenVMS client, you can specify the TCP/IP host name, node name, IP
address, or DECnet address for the CTC/AB server.

The maximum length for serverName is specified by the literal ctcNodeName-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length includes the null termination character (NUL).

2–14 Routine Specifications

ctcAbAssign

logicalIdentifier
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains an identifier
for the link. The identifier is assigned to the link at the CTC/AB server and
is defined during the installation of the CTC Server for Aspect software, or
after the installation with the Configuration Program or Control Program. For
details of these programs, see the CT-Connect for Aspect Management Guide.

You must supply the logical identifier exactly as it appears on the CTC/AB server,
including the same combination of uppercase and/or lowercase letters.

The maximum length for logicalIdentifier is specified by the literal ctcLogIdLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

networkType
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string value that identifies the
network protocol used between the CTC/AB client and the CTC/AB server.

Check with the system manager of your CTC/AB network for details of the
network protocol, and specify one of the values in the following table:

Network Protocol Value

NetBIOS™ over NetBEUI ncacn_nb_nb
TCP/IP ncacn_ip_tcp
DECnet ncacn_dnet_nsp
NetBIOS over TCP/IP ncacn_nb_tcp
Named pipes ncacn_np
Novell® SPX ncacn_spx
Local RPC† ncalrpc

†This protocol can be used only if the CTC/AB server and CTC/AB client are the same Windows
NT PC.

The maximum length for the networkType value is specified by the literal
ctcNetLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length includes the null termination character (NUL).

Routine Specifications 2–15

ctcAbConferenceJoin

ctcAbConferenceJoin
Merge Calls into a Conference

Format in C

unsigned int ctcAbConferenceJoin (ctcChanId channel)

Description

The ctcAbConferenceJoin routine merges two or more calls into a single
conference call.

For example, for A to include B and C in a conference call:

1. A calls B, using ctcAbMakeCall. B answers the call.

2. A places B on hold, using ctcAbHoldCall.

3. A calls C, using ctcAbConsultationCall.

4. When connected and talking to C, A creates the conference call using
ctcAbConferenceJoin. A, B, and C are included in the conference call.

A maximum of three parties can be included in a conference call.

Restrictions

This routine is supported for channels assigned to TeleSets only.

Aspect Application Bridge Message

Process Key Request (PKR)

CTC/AB sends a Process Key Request to the Application Bridge to simulate the
user pressing the TeleSet conference key to complete the conference call. The
Application Bridge returns a Process Key Request Response (PKRR) message
to verify that the parties are merged in a conference call. The application is
then free to call other routines.

For full details of this message, refer to the Aspect Application Bridge
documentation.

2–16 Routine Specifications

ctcAbConferenceJoin

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the assigned device in use.

Routine Specifications 2–17

ctcAbConsultationCall

ctcAbConsultationCall
Make a Consultation Call

Format in C

unsigned int ctcAbConsultationCall
(ctcChanId channel,
unsigned char calledNumber [ctcMaxDnLen],
unsigned int *callRefId,
struct ctcAbVarData *varData)

Description

The ctcAbConsultationCall routine makes a call to a third party when there is
a call on hold at the assigned TeleSet. You can then use one of the following
routines:

• ctcAbTransferCall to transfer the call and disconnect the assigned TeleSet

• ctcAbConferenceJoin to join the held call and the call to the third party
into a conference call

Transferring a Call
To transfer a call, use ctcAbConsultationCall followed by ctcAbTransferCall.

For example, for A to transfer to C an incoming call from B (where A’s current
call is the call from B):

1. B calls A, using ctcAbMakeCall, and A answers.

2. A places B on hold using ctcAbHoldCall.

3. A calls C, using ctcAbConsultationCall.

4. A invokes ctcAbTransferCall when connected to C. B and C are now
connected, and A is automatically disconnected.

2–18 Routine Specifications

ctcAbConsultationCall

Making a Conference Call
For a conference call, you use ctcAbConsultationCall only for the second call, or
subsequent calls; you make the initial call using ctcAbMakeCall.

For example, for A to include B and C in a conference call:

1. A calls B, using ctcAbMakeCall.

2. A places B on hold with ctcAbHoldCall.

3. A calls C, using ctcAbConsultationCall.

4. A invokes ctcAbConferenceJoin when connected and talking to C. A, B, and
C are then in a conference call.

A maximum of three parties can be included in a conference call.

Restrictions

This routine is supported for channels assigned to TeleSets only.

Aspect Application Bridge Message

Place Call Request

CTC/AB sends a Place Call Request (PCR) to the Aspect Application Bridge to
make a consultation call. The Application Bridge returns a Place Call Request
Response (PCRR) message to verify that the consultation call can be placed.

For full details of this message, refer to the Aspect Application Bridge
documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

Routine Specifications 2–19

ctcAbConsultationCall

calledNumber
type: character string (unsigned)
access: read only
mechanism: by value

This character string contains the number of the device you are calling:

• To make a consultation call to another TeleSet or telephone, specify its
telephone number. The number must be specified as an ASCII string which
can contain any combination of numbers 0 through 9 and the characters *
and #.

• To make a consultation call to a group associated with a CCT, specify
an ASCII string containing #8 followed by the number for the CCT. For
example, #8111 (where 111 is the number for the CCT).

• To make a consultation call to an agent through a CCT, specify an ASCII
string containing #8 followed by the number for the CCT. Then, specify the
number for the agent in one of the variable data fields in the ctcAbVarData
structure. See the description of the varData argument.

Note that the CCT must be set up so that it checks the correct variable
data field for an agent number. See your Aspect CallCenter administrator
for more information.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

callRefId
type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives the call reference
value for the call to the third party.

2–20 Routine Specifications

ctcAbConsultationCall

varData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbVarData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbVarData {
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];

}

The structure contains the following fields:

• varDataA

The address of a character string that contains information corresponding
to the Application Bridge variable field A. This ASCII string can contain
any combination of numbers 0 through 9 and the characters * and #.

The maximum length for varDataA is specified by the literal ctcMax-
DataALen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataB

The address of a character string that contains information corresponding
to the Application Bridge variable field B. This ASCII string can contain
any combination of numbers 0 through 9 and the characters * and #.

The maximum length for varDataB is specified by the literal ctcMax-
DataBLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataC

The address of a character string that contains information corresponding
to the Application Bridge variable field C. This ASCII string can contain
any combination of numbers 0 through 9 and the characters * and #.

The maximum length for varDataC is specified by the literal ctcMax-
DataCLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

Routine Specifications 2–21

ctcAbConsultationCall

• varDataD

The address of a character string that contains information corresponding
to the Application Bridge variable field D. This ASCII string can contain
any combination of numbers 0 through 9 and the characters * and #.

The maximum length for varDataD is specified by the literal
ctcMaxDataDLen in a CTC/AB definitions file (see Section 1.6). Note
that this maximum length does not include the null termination character
(NUL).

• varDataE

The address of a character string that contains information corresponding
to the Application Bridge variable field E. This ASCII string can contain
any combination of alphanumeric characters.

The maximum length for varDataE is specified by the literal ctcMaxDataE-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length does not include the null termination character (NUL).

2–22 Routine Specifications

ctcAbDeassign

ctcAbDeassign
Deassign a Channel

Format in C

unsigned int ctcAbDeassign (ctcChanId channel)

Description

The ctcAbDeassign routine deassigns the channel from the device and frees all
resources associated with it, both locally and on the CTC/AB server.

Use this routine at the end of a user session; that is, when the user has
finished using a CTC/AB application and the application no longer needs to
make use of the device to which the channel was assigned.

Monitoring is switched off before ctcAbDeassign completes. If you call
ctcAbDeassign and there are outstanding ctcAbGetEvent or ctcAbWinGetEvent
requests, a ctcMonitorOff condition value is returned.

Aspect Application Bridge Message

Event Monitor Request (EMR)

• If the channel is assigned to an ACD group or trunk group, CTC/AB sends
an EMR to the Application Bridge.

• If the channel is assigned to a station, TeleSet, trunk, InterQueue point, or
monitor channel, no Application Bridge message is returned.

For full details of the EMR message, refer to the Aspect Application Bridge
documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

Routine Specifications 2–23

ctcAbDeflectCall

ctcAbDeflectCall
Deflect a Ringing Call

Format in C

unsigned int ctcAbDeflectCall
(ctcChanId channel,
unsigned int callRefId,
unsigned char cct [ctcMaxDnLen],
unsigned int aspectAck,
struct ctcAbVarData *varData)

Description

The ctcAbDeflectCall routine responds to an Aspect Application Bridge Call
Information Message (CIM) or Call Track Information Message (CTIM)
received as an event. ctcAbDeflectCall causes the CTC/AB server to send a
Call Track Information Message Response (CTIMR) to the Aspect Call Control
Table (CCT) processing the call. Providing call path information in this way is
often referred to as call routing.

The CCT currently processing the call must contain a RECEIVE DATA step to
receive the CTIMR from the CTC/AB server. The CCT can then route the call
another CCT, which is identified by the cct argument.

For a detailed description of the CCT mechanism, refer to the Aspect
Application Bridge documentation.

Restrictions

This routine is supported for channels assigned to TeleSets and trunks only.

Aspect Application Bridge Message

Call Track Information Message Response (CTIMR)

The CTC/AB server receives a Call Information Messaged (CIM) or Call Track
Information Message (CTIM) as an event from the Aspect Application Bridge.
Note that if a CTIM is sent to the CTC/AB server, the REQUEST field must
contain the value 0 (no request).

The CTC/AB server responds by sending a CTIMR. The CCT must contain a
RECEIVE DATA step to receive this response.

For full details of these messages, refer to the Aspect Application Bridge
documentation.

2–24 Routine Specifications

ctcAbDeflectCall

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

callRefId
type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains the call identifier value for the
ringing call. The call identifier value is returned by the ctcAbGetEvent routine.

cct
type: character string (unsigned)
access: read only
mechanism: by value

This character string contains the number of the CCT to which the call will
be deflected. The ASCII string can contain any combination of numbers 000
through 999 and the characters * and #. Specify 000 if you want to use a
default CCT as defined by the Aspect CallCenter administrator.

The maximum length for cct is specified by the literal ctcMaxDnLen in a
CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Routine Specifications 2–25

ctcAbDeflectCall

aspectAck
type: integer (unsigned)
access: read only
mechanism: by value

This argument specifies the acknowledgement to be used in the RESP field
of the Aspect Call Track Information Message Response. Specify one of the
following values:

Value Acknowledgement

ctcK_AbAck Conveys a positive acknowledgement.
ctcK_AbNack Conveys a negative acknowledgement.

varData
type: structure
access: read and write
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbVarData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbVarData {
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];

}

The structure contains the following fields:

• varDataA

This field contains information corresponding to the Application Bridge
variable field A. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataA is specified by the literal ctcMax-
DataALen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

2–26 Routine Specifications

ctcAbDeflectCall

• varDataB

This field contains information corresponding to the Application Bridge
variable field B. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataB is specified by the literal ctcMax-
DataBLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataC

This field contains information corresponding to the Application Bridge
variable field C. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataC is specified by the literal ctcMax-
DataCLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataD

This field contains information corresponding to the Application Bridge
variable field D. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataD is specified by the literal
ctcMaxDataDLen in a CTC/AB definitions file (see Section 1.6). Note
that this maximum length does not include the null termination character
(NUL).

• varDataE

This field contains information corresponding to the Application Bridge
variable field E. This ASCII string can contain any combination of
alphanumeric characters.

The maximum length for varDataE is specified by the literal ctcMaxDataE-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length does not include the null termination character (NUL).

Routine Specifications 2–27

ctcAbErrMsg

ctcAbErrMsg
Get the Defined Name for a Condition Value

Format in C

char *ctcAbErrMsg (unsigned int errorCode)

Description

The ctcAbErrMsg routine returns the address of a null-terminated character
string that contains the defined name for a condition value.

Each condition value is associated with a name in a CTC/AB definitions file
(ctaberr.h or ctc_err.h). You use the name:

• To establish the nature of the condition. For example, ctcInvAgentMode
indicates that agentMode argument for ctcAbSetAgentStatus contains an
invalid value.

• To refer to Chapter 3 which lists CTC/AB conditions alphabetically and
describes possible causes for the error.

For example, if you specify the value 1014 with the errorCode argument,
CTC/AB returns the address of a null-terminated character string that contains
the name ctcInvLogId. You can then refer to Chapter 3 for a description of
ctcInvLogId.

Aspect Application Bridge Message

None.

Arguments

errorCode
type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains the condition value returned by
a CTC/AB routine.

CTC/AB returns the address of a null-terminated character string that contains
the name associated with the condition value that you specify.

2–28 Routine Specifications

ctcAbErrMsg

Note that:

• If the routine cannot map a name to the condition value, it returns the
address of a character string containing the decimal value of the input.

• If you specify a condition value for an RPC error, the character string
contains:

The CTC/AB-defined name associated with the condition value

The RPC name associated with the condition value (with the prefix
rpc_)

For example, the routine can return the address of the character string
ctcRpcConnecFail/rpc_s_ss_in_null_context. In this example, ctcRpc-
ConnecFail is the CTC/AB-defined name and rpc_s_ss_in_null_context is
the RPC name associated with the condition.

Routine Specifications 2–29

ctcAbGetChannelInformation

ctcAbGetChannelInformation
Get Information About a Channel

Format in C

unsigned int ctcAbGetChannelInformation
(ctcChanId channel,
struct ctcAbChanData *channelData)

Description

The ctcAbGetChannelInformation routine returns information about the
communications channel and the device to which the channel is assigned. The
routine provides the following information:

• The line type (station, TeleSet, ACD group, trunk, trunk group, InterQueue
point, or monitor channel).

• The CTC/AB procedures supported.

• For a station, its telephone number. When you assign to a station, you
specify its equipment number.

• If the assigned device is a TeleSet, and, at the time of the assign, an agent
was logged in to the TeleSet, its telephone number. When you assign to a
TeleSet, you specify its equipment number.

• For a trunk, its trunk number.

• For an ACD group or trunk group, its group number.

• For an InterQueue point, its InterQueue number.

• If the assigned device is a monitor channel, a device number for the
monitor channel. To receive events for the monitor channel on another
monitor channel, you specify this device number with the ctcAbAddMonitor
routine. See the description of ctcAbAddMonitor for more information.

You need to use ctcAbGetChannelInformation only once, each time you assign
a channel to a device; it provides static information about the channel and the
device to which it is assigned.

Aspect Application Bridge Message

None.

2–30 Routine Specifications

ctcAbGetChannelInformation

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

channelData
type: structure
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbChanData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbChanData {
unsigned int lineType;
unsigned int procedureSupport;
unsigned int attributeSupport;
unsigned char setDN [ctcMaxDnLen];
}

The following sections describe the fields in the ctcAbChanData structure.

Routine Specifications 2–31

ctcAbGetChannelInformation

lineType
This 32-bit integer contains a value that identifies the type of device associated
with the line. The following table shows the values that can be returned.

This value... Indicates that the channel is assigned to...

ctcK_Station A station
ctcK_TeleSet A TeleSet
ctcK_AcdGroup An ACD group
ctcK_Trunk A trunk
ctcK_TrunkGroup A trunk group
ctcK_InterQueue An InterQueue point
ctcK_MonitorChannel A monitor channel

procedureSupport
This 32-bit integer identifies the procedure routines supported by the Aspect
CallCenter. The following values can be returned:

ctcM_AddMonitor
ctcM_AnswerCall
ctcM_Assign
ctcM_ConferenceJoin
ctcM_ConsultationCall
ctcM_Deassign
ctcM_DeflectCall
ctcM_GetChannelInformation
ctcM_GetEvent
ctcM_HangupCall
ctcM_HoldCall
ctcM_MakeCall
ctcM_MakePredictiveCall
ctcM_ReassignResource
ctcM_RemoveMonitor
ctcM_RetrieveHeld
ctcM_SingleStepTransfer
ctcM_TransferCall

2–32 Routine Specifications

ctcAbGetChannelInformation

Note that:

• If ctcM_GetEvent is returned, both ctcAbGetEvent and ctcAbWinGetEvent
are supported.

• A function-supported mask is not returned for ctcAbErrMsg. This routine
is supported but, because its function is CTC/AB client-based and requires
no interaction with the Aspect CallCenter, no value is returned.

attributeSupport
This 32-bit integer identifies the attribute routines supported by the Aspect
CallCenter. Attribute routines are routines that set operating modes for the
assigned TeleSet.

The following values can be returned:

ctcM_GetMonitor
ctcM_SetAgentStatus
ctcM_SetMonitor

setDN
This field can return the following:

• If the assigned device is a station, its telephone number.

• If the assigned device is a TeleSet, and, at the time of the assign, an agent
was logged in at the TeleSet, its telephone number.

• If the assigned device is a trunk, its trunk number.

• If the channel is assigned to an ACD group or trunk group, the group
number.

• If the channel is assigned to an InterQueue point, the InterQueue number.

• If the channel is assigned to a monitor channel, a device number. You
can use this number to set up monitoring the monitor channel. See the
description of ctcAbAddMonitor for more information.

The maximum length for setDN is specified by the literal ctcMaxDnLen, in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Routine Specifications 2–33

ctcAbGetEvent

ctcAbGetEvent
Get Information About Event and State Changes

Format in C

unsigned int ctcAbGetEvent (ctcChanId channel,
struct ctcAbEventData *eventData,
unsigned int dontWait)

Description

The ctcAbGetEvent routine returns details of telephone activity on the assigned
device, or devices associated with a monitor channel.

The ctcAbGetEvent routine returns:

• Call references

• Call-tracking data corresponding to information in the track number and
track node fields of Application Bridge messages

• Call events

• Agent events

• The other party involved in the telephone call

• Data corresponding to information in the variable data fields of Application
Bridge messages

• Subtype data corresponding to information in the SUBTYPE field of
Application Bridge messages

• Transferred call identifiers

• Statistics data corresponding to the RTIME, QTIME, and TTIME fields of
Application Bridge messages

The amount of information that CTC/AB returns depends on the information
provided by the Aspect CallCenter. This may be different for a call that is
internal to the Aspect CallCenter and for an outside call, depending on the
type of trunks connected to the Aspect CallCenter.

Calling ctcAbGetEvent
For all assigned devices except monitor channels, you must set monitoring
on with the ctcAbSetMonitor routine before you use this routine.

Note that if you post a ctcAbGetEvent request and the previous ctcAbGetEvent
request has not yet completed, a ctcEventInProgress error is returned.

2–34 Routine Specifications

ctcAbGetEvent

Using ctcAbGetEvent With TeleSets and Trunks
For channels assigned to TeleSets or trunks, some event information is
available with Application Bridge Release 6.0 only (see Tables 2–2, 2–3, and
2–4). To receive this information, a channel must be assigned to the ACD group
or trunk group associated with the device before you assign to the device.

For example, to receive Application Bridge Release 6.0 events for the TeleSets
in an ACD group, you:

1. Assign a channel to the ACD group

2. Assign a channel to each TeleSet in the ACD group

You do not need to assign more than one channel to the ACD group. CTC/AB
returns the additional events on each channel assigned to a TeleSet in the
group.

Using ctcAbGetEvent With Monitor Channels
When an event occurs for a device monitored on a monitor channel, the
device can be identified by the DN returned in the monitorParty field of
the ctcAbEventData structure. All other event information returned in the
ctcAbEventData structure is associated with that device.

If you are monitoring another monitor channel, you can identify it by the
number returned in the nestedMonitorChannel field of the ctcAbEventData
structure.

After each event received on a monitor channel, you must repost the
ctcAbGetEvent routine. If you are monitoring a number of high-activity
devices, Dialogic recommends that you use more than one monitor channel
to monitor these devices. Although the CTC/AB server stores up to 20 events,
it is possible for it to lose event information when a number of events occur at
the same time. If event data is lost, the CTC/AB server returns the condition
value ctcEventDataLost.

Using ctcAbGetEvent With InterQueue Points
If your Aspect CallCenter is part of a network of CallCenters, you can monitor
calls that it receives from another CallCenter by assigning a channel to an
InterQueue.

A Network InterQueue is a virtual channel used to notify a CallCenter that it
will receive a call from another CallCenter in the network. When the target
CallCenter receives this notification, it processes it as if the call had already
been presented. For example, it can respond with an Application Bridge Call
Information Message (CIM) or Call Track Information Message (CTIM). At the
same time, it negotiates receipt of the call over a real trunk.

Routine Specifications 2–35

ctcAbGetEvent

When CTC/AB receives an Application Bridge message for a call associated
with the InterQueue, it generates an event shown in Table 2–5. As soon as
negotiation for a trunk is complete, the call is no longer associated with the
InterQueue. Instead, CTC/AB receives Application Bridge messages for the call
on the trunk and generates corresponding events. Table 2–3 shows CTC/AB
events that are returned for trunks.

This means that to track the progress of the call, a channel must be assigned
to both the InterQueue point and the trunk used for the call.

Restrictions

The following restrictions apply:

• ctcAbGetEvent returns information only when there is call activity. For
this reason, Dialogic recommends you use a multithreaded program to call
this routine so that your application can continue (see Section 1.11).

This does not apply to applications on CTC/AB clients running
Windows 3.1/3.11. To return telephone activity and call other routines,
these applications must use ctcAbWinGetEvent. See the description of
ctcAbWinGetEvent for more information.

• Not all events described are supported with Application Bridge Release 5.0;
some events require Application Bridge Release 6.0 with the Event Bridge
software option.

Tables 2–2 to 2–5 indicate which events require Release 6.0 and Event
Bridge software.

• Aspect Application Bridge Release 5.0 does not return information for the
following ctcAbEventData structure fields:

aniDigits
dnisDigits
agentId
agentGroup
agentMode

Aspect Application Bridge Messages

Refer to Tables 2–2 to 2–5 for details of the Application Bridge message
associated with each CTC/AB event.

2–36 Routine Specifications

ctcAbGetEvent

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

eventData
type: structure
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which
you allocate memory of type ctcAbEventData. The structure is defined in a
CTC/AB definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbEventData{
unsigned int refId;
unsigned int trackNumber;
unsigned int trackNode;
unsigned int oldRefId;
unsigned int oldTrackNumber;
unsigned int oldTrackNode;
unsigned int event;
unsigned int otherPartyType;
unsigned char otherParty [ctcMaxDnLen];
unsigned int otherPartyTrunk;
unsigned char aniDigits [ctcMaxDnLen];
unsigned char dnisDigits [ctcMaxDnLen];
unsigned char lineId [ctcMaxDnLen];
unsigned char agentId [ctcMaxDnLen];
unsigned char agentGroup [ctcMaxDnLen];
unsigned int agentMode;
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];
unsigned char subType [ctcMaxSubTypeLen];
unsigned int rTime;
unsigned int qTime;
unsigned int tTime;
unsigned char monitorParty [ctcMaxDnLen];
unsigned char nestedMonitorChannel [ctcMaxDnLen];

}

Routine Specifications 2–37

ctcAbGetEvent

The strings in the ctcAbEventData structure are all null-terminated. The
following sections describe the ctcAbEventData fields.

refId
This 32-bit field contains the call reference for a particular call. Use this
call reference when you use CTC/AB routines that affect existing calls. For
example, ctcAbTransferCall.

Note that after a call has been transferred, a new call reference for the call is
returned in this field.

trackNumber
This is a 32-bit field that contains one of the following:

• If the CTC/AB server receives the Application Bridge Call Track
Information Message (CTIM), the contents of the Application Bridge
TRACKNUM field.

• If the CTC/AB server receives the Application Bridge Call Track
Transfer Message (CTTM), the contents of the Application Bridge
NEW_TRACKNUM field.

The track number identifies a call path that originates from a CallCenter node,
and is not necessarily the same as the call reference.

trackNode
This is a 32-bit field that contains one of the following:

• If the CTC/AB server receives the Application Bridge Call Track
Information Message (CTIM), the contents of the Application Bridge
TRACKNODE field.

• If the CTC/AB server receives the Application Bridge Call Track
Transfer Message (CTTM), the contents of the Application Bridge NEW_
TRACKNODE field.

The track node is the number of the CallCenter node from which the call track
originated. For example, the number of the CallCenter receiving an incoming
call.

oldRefId
If the reference identifier for a call changes, this 32-bit field contains the
previous call reference.

oldTrackNumber
If the CTC/AB server receives the Application Bridge Call Track Transfer
Message (CTTM), the contents of the Application Bridge ASS_TRACKNUM
field are copied to this 32-bit field.

2–38 Routine Specifications

ctcAbGetEvent

oldTrackNode
If the CTC/AB server receives the Application Bridge Call Track Information
Message (CTIM), the contents of the Application Bridge ASS_TRACKNODE
field are copied to this 32-bit field.

event
This 32-bit integer identifies the call or agent state event. For possible event
values returned in this field:

• For stations and TeleSets, refer to Table 2–2.

• For trunks, refer to Table 2–3.

• For trunk groups and ACD groups, refer to Table 2–4.

• For InterQueue points, refer to Table 2–5.

These tables also show:

• How the values map to Aspect Application Bridge messages. For full
details of the Application Bridge messages, refer to the Aspect Application
Bridge documentation.

• Which of the other fields in the ctcAbEventData structure contain
information when an event occurs. The amount of information that
CTC/AB returns is dependent on the information provided by the Aspect
CallCenter.

When ctcAbGetEvent returns the information, compare the values returned in
the integer with the call event literals supplied in a CTC/AB definitions file
(see Section 1.6).

Routine Specifications 2–39

ctcAbGetEvent

Table 2–2 Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_AgentLoggedOn† (TeleSets only)

Agent
State Event
Message
(ASEM)

The agent has logged on. agentId
agentGroup

ctcK_AgentLoggedOff† (TeleSets only)

Agent
State Event
Message
(ASEM)

The agent has logged off. agentId
agentGroup

ctcK_AgentModeChange† (TeleSets only)

Agent
State Event
Message
(ASEM)

An ASEM is sent whenever the
state of an agent changes. For
example, when the agent changes
from Ready (Available) to Busy
(Reserved).

agentMode
agentId
agentGroup

ctcK_CallConnect

Call
Connect
Message
(CCM)

A SEND CONNECT step has
been encountered during CCT
processing, generating a Call
Connect message. This message
notifies the application that a call
is ringing at the assigned station
or TeleSet.

refId
subType
otherPartyType
otherParty
otherPartyTrunk
Variable data fields‡

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

2–40 Routine Specifications

ctcAbGetEvent

Table 2–2 (Cont.) Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallDisconnect

Call
Disconnect
Message
(CDM)

A previously identified call has
been disconnected.

refId
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

ctcK_CallQueued† (TeleSets only)

Call
Queued
Event
Message
(CQEM)

During CCT processing, one of the
following steps was encountered:
SELECT AGENT GROUP
SELECT AGENT SUPERGROUP
SELECT TRUNK GROUP

refId
otherPartyType
otherParty
otherPartyTrunk

ctcK_CallTrackInformation

Call Track
Information
Message
(CTIM)

A SEND TRACKDATA step has
been encountered during CCT
processing, generating a CTIM.

refId
trackNumber
trackNode
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

Routine Specifications 2–41

ctcAbGetEvent

Table 2–2 (Cont.) Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallTrackTransfer

Call Track
Transfer
Message
(CTTM)

Indication that a particular call
has been transferred to a different
destination. Track information is
associated with the call.

refId
trackNumber
trackNode
oldTrackNumber
oldTrackNode
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

ctcK_CallTransfer

Call
Transfer
Message
(CTM)

Indication that a particular call
has been transferred to a different
destination.

refId
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

ctcK_DestSeized† (TeleSets only)

Call
Offered
Event
Message
(COEM)

A call has been successfully
dialed. If this call is external
to the Aspect CallCenter, the
network number has been verified
and the outbound trunk seized.
This does not indicate that the
other end is actually ringing or
answered.

refId
otherPartyType
otherParty
otherPartyTrunk
Variable data fields‡

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

2–42 Routine Specifications

ctcAbGetEvent

Table 2–2 (Cont.) Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_InboundCall† (TeleSets only)

Call
Offered
Event
Message
(COEM)

An inbound call is ringing at the
assigned station or TeleSet.

refId
otherPartyType
otherParty
otherPartyTrunk
Variable data fields‡

ctcK_Offhook† (TeleSets only)

Call
Noticed
Event
Message
(CNEM)

One of the following line keys has
been pressed on the TeleSet:
OUTSIDE LINE 1
OUTSIDE LINE 2
INSIDE LINE
SUPERVISOR
MESSAGE
HELP

aniDigits

ctcK_OpAnswered† (TeleSets only)

Call
Connected
Event
Message
(CCEM)

The other party answered the
call from the assigned station or
TeleSet.

refId
otherPartyType
otherParty
otherPartyTrunk
Variable data fields‡
lineId

ctcK_OpConferenced† (TeleSets only)

Call
Conferenced
Event
Message
(CCFEM)

Another party on the call has
created a conference call

refId
oldrefId

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

Routine Specifications 2–43

ctcAbGetEvent

Table 2–2 (Cont.) Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_OpDisconnected† (TeleSets only)

Call
Disconnected
Event
Message
(CDEM)

The other party on the call has
been released and the call has
been terminated.

refId

ctcK_TpAnswered† (TeleSets only)

Call
Connected
Event
Message
(CCEM)

This party has answered the call
made to the assigned station or
TeleSet.

refId
otherPartyType
otherParty
otherPartyTrunk
lineId

ctcK_TpConferenced† (TeleSets only)

Call
Conferenced
Event
Message
(CCFEM)

This party has included another
party in a conference call.

refId
oldrefId
otherPartyType
otherParty
otherPartyTrunk

ctcK_TpDisconnected† (TeleSets only)

Call
Disconnected
Event
Message
(CDEM)

The last party on the call has
been released and the call has
been terminated.

refId

ctcK_TpRetrieved† (TeleSets only)

Call
Retrieved
Event
Message
(CREM)

A held call has been retrieved at
the assigned station or TeleSet.

refId

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.

(continued on next page)

2–44 Routine Specifications

ctcAbGetEvent

Table 2–2 (Cont.) Events Returned by ctcAbGetEvent for Stations and TeleSets

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_TpSuspended† (TeleSets only)

Call Held
Event
Message
(CHEM)

This party has placed a call on
hold.

refId

ctcK_Transferred†

Call
Transfer
Event
Message
(CTEM)

The call has been transferred. refId
oldrefId
otherPartyType
otherParty
otherPartyTrunk

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.

Table 2–3 Events Returned by ctcAbGetEvent for Trunks

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallConnect

Call
Connect
Message
(CCM)

A SEND CONNECT step has
been encountered during CCT
processing, generating a Call
Connect message. This message
notifies the application that a call
is ringing on the assigned trunk.

refId
subType
otherPartyType
otherParty
otherPartyTrunk
Variable data fields‡

ctcK_CallDisconnect

Call
Disconnect
Message
(CDM)

A previously identified call has
been disconnected (or abandoned)
before the call was answered.

refId
subType
rTime
qTime
tTime
Variable data fields‡

‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

Routine Specifications 2–45

ctcAbGetEvent

Table 2–3 (Cont.) Events Returned by ctcAbGetEvent for Trunks

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallInformation

Call
Information
Message
(CIM)

A SEND DATA step has been
encountered during CCT
processing, generating a CIM.

refId
subType
rTime
qTime
tTime
Variable data fields‡

ctcK_CallQueued†

Call
Queued
Event
Message
(CQEM)

During CCT processing, one of the
following steps was encountered:
SELECT AGENT GROUP
SELECT AGENT SUPERGROUP
SELECT TRUNK GROUP

refId
otherPartyType
otherParty
otherPartyTrunk

ctcK_CallTrackInformation

Call Track
Information
Message
(CTIM)

A SEND TRACKDATA step has
been encountered during CCT
processing, generating a CTIM.

refId
trackNumber
trackNode
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

2–46 Routine Specifications

ctcAbGetEvent

Table 2–3 (Cont.) Events Returned by ctcAbGetEvent for Trunks

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallTrackTransfer

Call Track
Transfer
Message
(CTTM)

Indication that a particular call
has been transferred to a different
destination. Track information is
associated with the call.

refId
trackNumber
trackNode
oldTrackNumber
oldTrackNode
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields†

ctcK_CallTransfer

Call
Transfer
Message
(CTM)

Indication that a particular call
has been transferred to a different
destination.

refId
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

ctcK_InboundCall

Call
Noticed
Event
Message
(CNEM)

A call has come in to the ACD for
the trunk.

refId
dnisDigits
aniDigits

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

Routine Specifications 2–47

ctcAbGetEvent

Table 2–4 Event Returned by ctcAbGetEvent for ACD Groups and Trunk Groups

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallQueued

Call
Queued
Event
Message
(CQEM)

During CCT processing, one of the
following steps was encountered:
SELECT AGENT GROUP
SELECT AGENT SUPERGROUP
SELECT TRUNK GROUP

refId
otherPartyType
otherParty
otherPartyTrunk

Table 2–5 Events Returned by ctcAbGetEvent for InterQueues

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallDisconnect

Call
Disconnect
Message
(CDM)

A previously identified call has
been disconnected (or abandoned)
before a trunk for the call could
be negotiated.

refId
subType
rTime
qTime
tTime
Variable data fields‡

ctcK_CallInformation

Call
Information
Message
(CIM)

A SEND DATA step has been
encountered during CCT
processing, generating a CIM.

refId
subType
rTime
qTime
tTime
Variable data fields‡

ctcK_CallQueued†

Call
Queued
Event
Message
(CQEM)

During CCT processing, one of the
following steps was encountered:
SELECT AGENT GROUP
SELECT AGENT SUPERGROUP
SELECT TRUNK GROUP

refId
otherPartyType
otherParty
otherPartyTrunk

†Requires Aspect Application Bridge Release 6.0 and Event Bridge software.
‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

(continued on next page)

2–48 Routine Specifications

ctcAbGetEvent

Table 2–5 (Cont.) Events Returned by ctcAbGetEvent for InterQueues

Event-Value
Aspect
Message Description ctcAbEventData Fields Used

ctcK_CallTrackInformation

Call Track
Information
Message
(CTIM)

A SEND TRACKDATA step has
been encountered during CCT
processing, generating a CTIM.

refId
trackNumber
trackNode
subType
otherPartyType
otherParty
otherPartyTrunk
rTime
qTime
tTime
Variable data fields‡

ctcK_InboundCall

Call
Noticed
Event
Message
(CNEM)

A call has come in to the ACD for
the trunk.

refId
dnisDigits
aniDigits

‡One or more of the varDataA, varDataB, varDataC, varDataD, and varDataE fields

otherPartyType
This 32-bit field identifies the other party. It can contain one of the following
values:

ctcK_TeleSet
ctcK_Station
ctcK_Trunk

otherParty
This field contains a character string that specifies the number for the other
party.

The maximum length for otherParty is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file. (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Routine Specifications 2–49

ctcAbGetEvent

otherPartyTrunk
If the otherPartyType field contains the value ctcK_Trunk, this 32-bit field
contains the trunk line number for the other party. The trunk line number is
provided by the Aspect CallCenter.

aniDigits
This character string contains Automatic Number Identification (ANI) digits.

The maximum length for aniDigits is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

dnisDigits
This character string contains Dialed Number Identification Service (DNIS)
digits.

The maximum length for dnisDigits is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

lineId
This character string contains the Terminating Line Identifier (TLI) for the
call. The TLI identifies the actual destination or extension that answered the
call.

The maximum length for lineId is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

agentId
This character string contains the extension number used by the agent when
logging on.

The maximum length for agentId is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

agentGroup
This character string contains the agent’s group number.

The maximum length for agentGroup is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

2–50 Routine Specifications

ctcAbGetEvent

agentMode
This 32-bit field returns the current work mode for an agent. It can contain
one of the following values:

ctcK_AgentAfterCallWork
ctcK_AgentOtherWork
ctcK_AgentReady
ctcK_AgentReserved

varDataA
This 24-byte field contains a copy of the data in the Application Bridge message
variable field A.

varDataB
This 12-byte field contains a copy of the data in the Application Bridge message
variable field B.

varDataC
This 8-byte field contains a copy of the data in the Application Bridge message
variable field C.

varDataD
This 8-byte field contains a copy of the data in the Application Bridge message
variable field D.

varDataE
This 44-byte field contains a copy of the data in the Application Bridge message
variable field E.

subType
This 16-byte field contains a copy of the Application Bridge SUBTYPE message.

rTime
The contents of the Application Bridge RTIME field are copied to this 32-
bit field when the CTC/AB server receives the following Application Bridge
messages:

Call Transfer Message (CTM)
Call Disconnect Message (CDM)
Call Track Transfer Message (CTTM)

The RTIME field indicates the time (in seconds) that the incoming call rang
before it was answered.

Routine Specifications 2–51

ctcAbGetEvent

qTime
The contents of the Application Bridge QTIME field are copied to this 32-
bit field when the CTC/AB server receives the following Application Bridge
messages:

Call Transfer Message (CTM)
Call Disconnect Message (CDM)
Call Track Transfer Message (CTTM)

The QTIME message indicates the time (in seconds) that the call was in a
queue before it was connected.

tTime
The contents of the Application Bridge TTIME field are copied to this 32-
bit field when the CTC/AB server receives the following Application Bridge
messages:

Call Transfer Message (CTM)
Call Disconnect Message (CDM)
Call Track Transfer Message (CTTM)

The TTIME message indicates the time (in seconds) that the call remained
connected to its first destination before it was transferred.

monitorParty
Information is returned in this field when you call ctcAbGetEvent for a monitor
channel. You assign to a monitor channel to receive events for a number of
devices over a single channel (see ctcAbAssign for more information).

The device number returned in this field identifies the device for which event
information is returned.

The maximum length for monitorParty is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

nestedMonitorChannel
This field returns a device number that identifies the nested monitor channel
for which event information is returned. A nested monitor channel is a channel
that is monitored by another monitor channel. Information is returned in this
field only if you call ctcAbGetEvent for a monitor channel and that channel is
monitoring another monitor channel.

The maximum length for nestedMonitorChannel is specified by the literal
ctcMaxDnLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length includes the null termination character (NUL).

2–52 Routine Specifications

ctcAbGetEvent

dontWait
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer is a Boolean value which, when set, allows an application
to poll for events without having to create a separate thread. If there is no
new event data, the routine will not block and a ctcNoEvent condition value is
returned.

Routine Specifications 2–53

ctcAbGetMonitor

ctcAbGetMonitor
Get Information About the Monitoring State

Format in C

unsigned int ctcAbGetMonitor (ctcChanId channel,
unsigned int *monitorMode)

Description

This routine returns information about the current monitoring state
of the assigned device. The monitoring state can be changed with the
ctcAbSetMonitor routine.

Restrictions

This routine is not supported for channels assigned to monitor channels.

Aspect Application Bridge Message

None.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

2–54 Routine Specifications

ctcAbGetMonitor

monitorMode
type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives one of the values
in the following table:

Value Description

ctcK_On Indicates that monitoring on the assigned device is set on
ctcK_Off Indicates that monitoring on the assigned device is set off

Routine Specifications 2–55

ctcAbHangupCall

ctcAbHangupCall
Disconnect a Call

Format in C

unsigned int ctcAbHangupCall (ctcChanId channel,
unsigned int callRefId)

Description

The ctcAbHangupCall routine terminates an active call on the station, TeleSet,
or trunk and returns it to the null state.

Restrictions

The following restrictions apply:

• This routine is supported for channels assigned to stations, TeleSets, or
trunks only.

• Aspect Application Bridge Release 5.0 does not support a call reference
identifier for the call you wish to hang up. See the description of the
callRefId argument for details.

Aspect Application Bridge Message

Release Call Request (RCR)

CTC/AB sends an RCR to request that the Aspect CallCenter release the
specified station, TeleSet, or trunk. For full details of this message, refer to the
Aspect Application Bridge documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

2–56 Routine Specifications

ctcAbHangupCall

callRefId
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call reference identifier for the call you wish
to hang up. This call reference identifier is returned by the ctcAbGetEvent
routine.

Call reference identifiers are not supported by Aspect Application Bridge
software Release 5.0. If you are using Release 5.0, you must specify the value
zero (0) with this argument and the Aspect CallCenter hangs up the current
active call on the assigned device.

Routine Specifications 2–57

ctcAbHoldCall

ctcAbHoldCall
Put Current Call on Hold

Format in C

unsigned int ctcAbHoldCall (ctcChanId channel)

Description

The ctcAbHoldCall routine puts the current call on the assigned device on
hold. You can then make a consultation call using ctcAbConsultationCall and
either transfer the held call with ctcAbTransferCall, or create a conference
call with ctcAbConferenceJoin. See the description of ctcAbConsultationCall,
ctcAbTransferCall, and ctcAbConferenceJoin for details.

Retrieving a Call
If you place a call on hold, you can retrieve the call with ctcAbRetrieveHeld.

Restrictions

This routine is supported for channels assigned to TeleSets only.

Aspect Application Bridge Message

Process Key Request (PKR)

CTC/AB sends a Process Key Request to the Application Bridge to simulate the
user pressing the TeleSet hold key. The Application Bridge returns a Process
Key Request Response (PKRR) message to verify that the call is on hold. The
application is then free to call other routines.

For full details of this message, refer to the Aspect Application Bridge
documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

2–58 Routine Specifications

ctcAbMakeCall

ctcAbMakeCall
Make a Call

Format in C

unsigned int ctcAbMakeCall
(ctcChanId channel,
unsigned char calledNumber [ctcMaxDnLen],
unsigned char cct [ctcMaxDnLen],
unsigned int callType,
unsigned int *callRefId,
struct ctcAbVarData *varData)

Description

The ctcAbMakeCall routine makes a call from the station or TeleSet to which
the channel is assigned to any number that the Aspect CallCenter recognizes
as valid.

You identify the device that you want to call with the calledNumber argument.
This argument specifies the directory number (the telephone number) for the
device.

Restrictions

This routine is supported for channels assigned to stations and TeleSets only.

Aspect Application Bridge Message

Place Call Request (PCR)

The Application Bridge returns a Place Call Request Response (PCRR)
message to verify that the call is placed. The application is then free to call
other routines.

For full details of this message, refer to the Aspect Application Bridge
documentation.

Routine Specifications 2–59

ctcAbMakeCall

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

calledNumber
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number of
the device you want to call. The ASCII string can contain any combination of
numbers 0 through 9 and the characters * and #.

Note that if you specify the CCT to be used (see the cct argument), you do not
need to include the access code in the number for the device.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note this maximum length
includes the null termination character (NUL).

cct
type: character string (unsigned)
access: read only
mechanism: by reference

Use this argument in conjunction with the callType argument to establish
the type of call and processing required. This argument is the address of a
character string that contains the number of the CCT you want to use. The
CCT contains instructions for processing the call within the Aspect CallCenter
until it is connected.

This ASCII string contains a three-digit number. Specify the value 000 when
using Least Cost Routing.

The maximum length for cct is specified by the literal ctcMaxDnLen in a
CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

2–60 Routine Specifications

ctcAbMakeCall

callType
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains a value that identifies the type of call you want to
make. Specify one of the values in the following table:

Specify this value... To instruct the Application Bridge...

ctcK_AbCallTypeLeastCost To select the CCT (for least-cost routing). For
this type of call, you must specify the value
000 with the cct argument.

ctcK_AbCallTypeUseCCT To use the specified CCT to make the outbound
call. For this type of call, you must specify the
number of the CCT with the cct argument.

ctcK_AbCallTypeInternal That this is an internal call to another agent.
For this type of call, specify the agent’s
extension number with the calledNumber
argument, and the address of a zero-length
character string with the cct argument.

callRefId
type: integer (unsigned)
access: write only
mechanism: by value

This argument is the address of a 32-bit integer that receives the call reference
value of the new call.

Routine Specifications 2–61

ctcAbMakeCall

varData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbVarData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbVarData {
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];

}

The structure contains the following fields:

• varDataA

This field contains information corresponding to the Application Bridge
variable field A. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataA is specified by the literal ctcMax-
DataALen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataB

This field contains information corresponding to the Application Bridge
variable field B. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataB is specified by the literal ctcMax-
DataBLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataC

This field contains information corresponding to the Application Bridge
variable field C. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataC is specified by the literal ctcMax-
DataCLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

2–62 Routine Specifications

ctcAbMakeCall

• varDataD

This field contains information corresponding to the Application Bridge
variable field D. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataD is specified by the literal
ctcMaxDataDLen in a CTC/AB definitions file (see Section 1.6). Note
that this maximum length does not include the null termination character
(NUL).

• varDataE

This field contains information corresponding to the Application Bridge
variable field E. This ASCII string can contain any combination of
alphanumeric characters.

The maximum length for varDataE is specified by the literal ctcMaxDataE-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length does not include the null termination character (NUL).

Routine Specifications 2–63

ctcAbMakePredictiveCall

ctcAbMakePredictiveCall
Make Predictive Calls

Format in C

unsigned int ctcAbMakePredictiveCall
(ctcChanId channel,
unsigned char calledNumber [ctcMaxDnLen],
unsigned char cct [ctcMaxDnLen],
unsigned int callType,
struct ctcAbPredData *predData,
struct ctcAbVarData *varData,
unsigned int *callRefId)

Description

The ctcAbMakePredictiveCall routine allows a virtual party on the Aspect
CallCenter to initiate calls on behalf of a group of users.

Depending on the configuration of your switch, at some time during the
progress of the call, the call is allocated to a physical device. Only when the
called device answers (or, for example, the phone rings a preconfigured number
of times) does the call get put through to the user.

Restrictions

The following restrictions apply:

• This routine requires Application Bridge Release 6.0 and the Resource
Bridge option.

For more information about this software, refer to your Aspect
documentation.

• This routine is supported for channels assigned to ACD groups only.

Aspect Application Bridge Message

Make Predictive Call Request (MPCR)

CTC/AB sends a Make Predictive Call Request to the Application Bridge. The
Application Bridge returns a Make Predictive Call Request Response message.
For more information, refer to the Aspect Application Bridge documentation.

2–64 Routine Specifications

ctcAbMakePredictiveCall

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

calledNumber
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number of
the device you want to call. The ASCII string can contain any combination of
numbers 0 through 9 and the characters * and #.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

cct
type: character string (unsigned)
access: read only
mechanism: by reference

Use this argument in conjunction with the callType argument to establish
the type of call and processing required. This argument is the address of a
character string that contains the number of the CCT you want to use. The
CCT contains instructions for processing the call within the Aspect CallCenter
until it is connected.

This ASCII string contains a three-digit number. Specify the value 000 when
using Least Cost Routing.

Routine Specifications 2–65

ctcAbMakePredictiveCall

callType
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains a value that identifies the type of call you want to
make. Specify one of the following:

Specify this value... To instruct the Application Bridge...

ctcK_AbCallTypeLeastCost To select the CCT (for least-cost routing). For
this type of call, you must specify the value
000 with the cct argument.

ctcK_AbCallTypeUseCCT To use the specified CCT to make the outbound
call. For this type of call, you must specify the
number of the CCT with the cct argument.

ctcK_AbCallTypeInternal That this is an internal call to another agent.
For this type of call, specify the agent’s
extension number with the calledNumber
argument, and the address of a zero-length
character string with the cct argument.

predData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbPredData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbPredData {
unsigned char origLineId [ctcMaxDnLen];
unsigned int rnaTimeout;
unsigned int answerMode;
unsigned int amsDelay;
unsigned int amrMode;
unsigned int answerMap;
unsigned int adparam;
unsigned int countryCode;

}

The following sections describe each ctcAbPredData field.

2–66 Routine Specifications

ctcAbMakePredictiveCall

origLineId
This character string contains the originating line identity, used if the outgoing
trunk is DPNSS. It is an ASCII string that can contain any combination of
numbers 0 through 9 and the characters * and #.

The maximum length for this string is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

rnaTimeout
This 32-bit field contains the maximum time (in seconds) that the Aspect
CallCenter allows before declaring a call unanswered. The time starts from
the receipt of ringback tone or when an "alerting" message is received from the
Aspect CallCenter network.

answerMode
This 32-bit integer contains a value that you specify to indicate when a call is
successful (for example, after the call is answered or after the phone rings a
set number of times). If the call is successful, the switch puts the call through
to an agent.

Specify one of the following values:

Value Description

ctcK_AbAnsDisRingback Specifies that the call is successful if the call is
answered (ringback tone ceased).

ctcK_AbAnsDisVoice Specifies that the call is successful if answered
after a specified delay. This ensures that the call
is not answered by a modem.

ctcK_AbAnsScreen Specifies that the call is successful if the call
is answered before the Answer Machine Screen
Delay time. This delay time determines whether
a human or an answering machine answers the
call. If an answering machine is detected, the call
is not put through to an agent.

amsDelay
This 32-bit integer specifies the Answer Machine Screen Delay time (in
seconds). This delay time is used if you specify ctcK_AbAnsScreen with the
answerMode argument.

Routine Specifications 2–67

ctcAbMakePredictiveCall

amrMode
This 32-bit field contains a value that specifies the method of reporting answer
machine detection. This is used only if you specify ctcK_AbAnsScreen with the
answerMode argument.

Specify one of the values in the following table:

Value Description

ctcK_AbAmrThreshold Report as soon as the duration of the response
exceeds that usually given by humans. This
mode provides the best opportunity for an
agent to leave a message after the beep. It
also enables an agent to use the Outbound
Call Management System (OCMS) to override
answer machine classification.

ctcK_AbAmrImmediate Report as soon as the recorded voice message
has ended. The Aspect CallCenter assumes
that this message is the initial answering
machine greeting.

ctcK_AbAmrFixed Report after a fixed period of time following
the end of the recorded voice message. The
Aspect CallCenter attempts to delay until
after the beep tone.

ctcK_AbAmrBeepUnknown Report when the initial recorded voice message
and beep tone have ended. This mode treats
immediate beep tone following answer as an
unknown tone and the Aspect CallCenter does
not report it as an answering machine.

ctcK_AbAmrBeepAnsMc Report when the initial recorded message
and beep tone have ended. If the Aspect
CallCenter detects immediate beep tone
following answer, it reports it as an answering
machine.

2–68 Routine Specifications

ctcAbMakePredictiveCall

answerMap
This 32-bit field indicates which action(s) are taken in response to Application
Bridge event(s) that are generated when the application makes the call:

• To take the ANSWER branch of the WAIT ANSWER CCT step, you use
this field to specify a bitmask that corresponds to the event:

Event Bitmask

Cause 22 received in ISDN DISCONNECT
message. This indicates that the called
number has been changed and a recorded
announcement providing a new telephone
number may follow

ctcM_AbAnsMapCause22

Special Information Tone (SIT) 1 received
from the network

ctcM_AbAnsMapSit1

SIT 2 received from the network ctcM_AbAnsMapSit2
SIT 3 received from the network ctcM_AbAnsMapSit3
SIT 4 received from the network ctcM_AbAnsMapSit4
SIT 5 received from the network ctcM_AbAnsMapSit5
SIT 6 received from the network ctcM_AbAnsMapSit6
SIT 7 received from the network ctcM_AbAnsMapSit7
Unidentifyable SIT received from the
network (includes European and Australian
SIT)

ctcM_AbAnsMapSitOther

Timeout occurred after call answer without
receiving voice (during answering machine
screening only)

ctcM_AbAnsMapTimeout

Continuous voice with duration exceeding
timeout value occurred after call answer
(during answering machine screening only)

ctcM_AbAnsMapVoice

Unclassifiable tone received ctcM_AbAnsMapUknown

• To disconnect the call, you do not specify a bitmask for the event.

For example, if you specify ctcM_AbAnsMapSit2 and ctcM_AbAnsMapSit3, the
ANSWER branch is taken when a SIT 2 or SIT 3 event is received.

Routine Specifications 2–69

ctcAbMakePredictiveCall

adParam
This 32-bit field indicates whether an optional feature for Answer Detect is
used for the call. Currently, the Application Bridge supports only one optional
feature for Answer Detect: detection for the end of ringback.

Use this field in the following way:

• To detect the end of ringback only if the ringback OFF interval exceeds 10
seconds, use this field to specify the bitmask ctcM_AbAnsDetRingbackEnd.

• To detect the end of ringback if either the ringback OFF interval exceeds
maximum or the ON interval is shorter than minimum (except for the first
ON interval), do not specify a bitmask in this field.

countryCode
This 32-bit field contains a value that identifies the destination country. This
information is used by the Aspect CallCenter to specify country-specific tone
frequencies.

Currently, the Aspect CallCenter supports one value only:

Value Description

ctcK_CountryUSCan Specifies that the target country is the United States
or Canada

For other destinations, specify the value zero (0) in this field.

varData
type: structure
access: read only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbVarData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbVarData {
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];

}

2–70 Routine Specifications

ctcAbMakePredictiveCall

The structure contains the following fields:

• varDataA

This field contains information corresponding to the Application Bridge
variable field A. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataA is specified by the literal ctcMax-
DataALen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataB

This field contains information corresponding to the Application Bridge
variable field B. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataB is specified by the literal ctcMax-
DataBLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataC

This field contains information corresponding to the Application Bridge
variable field C. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataC is specified by the literal ctcMax-
DataCLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataD

This field contains information corresponding to the Application Bridge
variable field D. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataD is specified by the literal ctcMax-
DataDLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataE

This field contains information corresponding to the Application Bridge
variable field E. This ASCII string can contain any combination of
alphanumeric characters.

The maximum length for varDataE is specified by the literal ctcMaxDataE-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length does not include the null termination character (NUL).

Routine Specifications 2–71

ctcAbMakePredictiveCall

callRefId
type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives the call reference
identifier for the new call.

2–72 Routine Specifications

ctcAbReassignResource

ctcAbReassignResource
Reassign an Agent to Another Group, Team, or Class of
Service

Format in C

unsigned int ctcAbReassignResource (ctcChanId channel,
unsigned char group [ctcMaxDnLen],
unsigned char team [ctcMaxDnLen],
unsigned int cos)

Description

The ctcAbReassignResource routine reassigns an agent to a different ACD
group, supervisor team, or Class of Service (COS).

The agent’s default and current settings for group, team, and COS are stored in
their user record on the Aspect CallCenter. You can use ctcAbReassignResource
to change the current settings for an agent after they have logged on to a
TeleSet.

ctcAbReassignResource enables you to:

• Change the COS for an agent

• Move an agent to a new ACD group (also known as agent group)

• Move an agent to a new supervisor team

• Reassign an agent to their default group, team, or COS

Note that when the Aspect CallCenter initializes, the current settings for
group, team, and COS in an agent’s user record are set to match the default
settings.

Restrictions

The following restrictions apply:

• This routine requires Application Bridge Release 6.0 and the Resource
Bridge option.

For more information about this software, refer to your Aspect
documentation.

• ctcAbReassignResource is supported for channels assigned to TeleSets only.

Routine Specifications 2–73

ctcAbReassignResource

Aspect Application Bridge Message

Reassign Resource Request (RRR)

CTC/AB sends an RRR to the Application Bridge. The Application Bridge
returns a Reassign Resource Request Response message. For more
information, refer to your Aspect Application Bridge documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

group
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number
for the ACD group to which the agent will be moved.

The maximum length for group is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

To reassign an agent to their default group, specify the address of a zero-length
character string.

team
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number
for the supervisor team to which the agent will be moved.

The maximum length for team is specified by the literal ctcMaxDnLen in a
CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

To reassign an agent to their default team, specify the address of a zero-length
character string.

2–74 Routine Specifications

ctcAbReassignResource

cos
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the new COS to be assigned to the agent. Specify
a value that identifies the COS as defined on the CallCenter.

To reassign an agent to their default COS, specify the value zero (0).

Routine Specifications 2–75

ctcAbRemoveMonitor

ctcAbRemoveMonitor
Remove a Device From a Monitor Channel

Format in C

unsigned int ctcAbRemoveMonitor (ctcChanId channel,
unsigned char deviceDN [ctcMaxDnLen])

Description

The ctcAbRemoveMonitor routine removes monitoring for a device associated
with a monitor channel. Use this routine when you no longer want to receive
event information for the device on the monitor channel.

To stop monitoring all devices on a monitor channel, and deassign the monitor
channel, use ctcAbDeassign.

Restrictions

The following restrictions apply:

• This routine is supported for channels assigned to monitor channels only.

• This routine is not supported on CTC/AB clients running Windows 3.1
/3.11. CTC/AB applications running on Windows 3.1/3.11 cannot assign to
monitor channels.

Aspect Application Bridge Message

None

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

2–76 Routine Specifications

ctcAbRemoveMonitor

deviceDN
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the DN for the
device you no longer want to monitor. Specify one of the following:

For this type of device... Specify...

Station Equipment number
TeleSet Equipment number
Trunk Trunk number
ACD group Group number
Trunk group Trunk number
InterQueue InterQueue number
Monitor channel The setDN value returned by the routine

ctcAbGetChannelInformation. See the description of
this routine for more information.

This ASCII string can contain any combination of numbers 0 through 9 and
the characters * and #.

The maximum length for deviceDN is specified by the literal ctcMaxDnLen in
a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Routine Specifications 2–77

ctcAbRetrieveHeld

ctcAbRetrieveHeld
Retrieve a Call on Hold

Format in C

unsigned int ctcAbRetrieveHeld (ctcChanId channel,
unsigned int callRefId)

Description

The ctcAbRetrieveHeld routine cancels a consultation call and retrieves the
call on hold.

For example, for A to cancel a consultation call and retrieve a call on hold:

1. A calls B, and places B on hold with ctcAbHeldCall.

2. A calls C using ctcAbConsultationCall.

3. There is no answer from C, so A uses ctcAbRetrieveHeld to cancel the call
to C and retrieve the call to B.

Restrictions

The following restrictions apply:

• This routine is supported for channels assigned to TeleSets only.

• Aspect Application Bridge Release 5.0 does not support a call reference
identifier for the held call. See the description of the callRefId argument
for more information.

Aspect Application Bridge Message

CTC/AB sends one of the following:

• Process Key Request (PKR) for Application Bridge Release 5.0

• Retrieve Call Request (RTCR) for Application Bridge Release 6.0

This simulates the user pressing a TeleSet key to retrieve the held call.
The Application Bridge returns a response message to verify that the call is
retrieved. The application is then free to call other routines. For full details of
these messages, refer to the Aspect Application Bridge documentation.

2–78 Routine Specifications

ctcAbRetrieveHeld

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

callRefId
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call identifier value for the held call you wish
to retrieve. This value is returned by the ctcAbGetEvent routine.

The call identifier value for the held call is not supported by Aspect Application
Bridge Release 5.0. If you are using Application Bridge Release 5.0, specify the
value zero (0) with this argument.

Routine Specifications 2–79

ctcAbSetAgentStatus

ctcAbSetAgentStatus
Set the Status for an Agent

Format in C

unsigned int ctcAbSetAgentStatus
(ctcChanId channel,
unsigned int agentMode,
unsigned int reason,
unsigned char agentData [ctcMaxDnLen],
unsigned char logicalAgent [ctcMaxDnLen])

Description

The ctcAbSetAgentStatus routine enables agents to declare themselves to be:

• Logged in

• Ready to take calls

• Completing details after a call

• Unavailable (not ready to take calls)

• Logged out

The Aspect CallCenter will not present calls to a user unless they declare
themselves as ready to take calls.

Restrictions

The following restrictions apply:

• This routine is supported for channels assigned to TeleSets only.

• Agent log in and log out are not supported by Aspect Application Bridge
Release 5.0. See the descriptions of the agentMode, reason, agentData, and
logicalAgent, arguments for more information.

Aspect Application Bridge Message

The CTC/AB sends one of the following:

• For Application Bridge Release 5.0, a Process Key Request (PKR).

• For Application Bridge Release 6.0, a PKR, Sign On Request (SONR), or
Sign Off Request (SOFR).

2–80 Routine Specifications

ctcAbSetAgentStatus

The Application Bridge returns a response message to verify the agent status.
The application is then free to call other routines. For more information about
these messages, refer to your Aspect Application Bridge documentation.

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

agentMode
type: integer (unsigned)
access: read only
mechanism: by value

This argument specifies the status for a user. It contains one of the following
values:

Value Description

ctcK_AgentLogin† Signs on the agent to the specified TeleSet.
ctcK_AgentLogout† Signs off the agent from the specified TeleSet.
ctcK_AgentReady Agent is available (ready to take calls). This

simulates the user pressing the Aspect TeleSet
READY key.

ctcK_AgentNotReady Agent is not ready to receive calls (idle state).
This simulates the user pressing the Aspect
TeleSet RELEASE key.

ctcK_AgentAfterCallWork Agent releases a call (hangs up) and is logging
wrap-up information. This simulates the user
pressing the Aspect TeleSet WRAP-UP key.

†Requires Aspect Application Bridge Release 6.0.

Routine Specifications 2–81

ctcAbSetAgentStatus

reason
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit argument specifies the reason why an agent has signed off
(ctcK_AgentLogout with the agentMode argument). Specify a value from 1
through 999 to identify a reason code defined on the Aspect CallCenter. Specify
the value zero (0) to use the system default value (no code specified).

The reason argument is not supported for Release 5.0 of the Aspect Application
Bridge software. If you are using this release, specify the value zero (0) with
this argument.

agentData
type: character string (unsigned)
access: read only
mechanism: by reference

This 32-bit argument can be used to specify a password (if required) when the
agent logs in (ctcK_AgentLogin with the agentMode argument).

The maximum length for agentData is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Note that this argument is not supported for Release 5.0 of the Aspect
Application Bridge software. If you are using this release, specify the address
of a zero-length string.

logicalAgent
type: character string (unsigned)
access: read only
mechanism: by reference

This 32-bit argument specifies the extension number for the agent when they
log in or log out.

The maximum length for logicalAgent is specified by the literal ctcMaxDnLen
in a CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

Note that this argument is not supported for Release 5.0 of the Aspect
Application Bridge software. If you are using this release, specify the address
of a zero-length string.

2–82 Routine Specifications

ctcAbSetMonitor

ctcAbSetMonitor
Set Monitoring for a Device

Format in C

unsigned int ctcAbSetMonitor (ctcChanId channel,
unsigned int monitorMode)

Description

The ctcAbSetMonitor routine changes the monitoring state of the assigned
device.

You can use this routine with ctcAbGetEvent to receive useful information on
the state of calls associated with a single device, such as a TeleSet. Status
information is returned whenever a significant event occurs; for example, when
an incoming call arrives, or when an active call is disconnected.

Monitoring Devices
Monitoring a device can provide information on the other party or parties
involved in a phone call. It can return:

• The extension numbers for those parties on the same Aspect CallCenter

• For an outside call, the trunk number in use on the Aspect CallCenter

Monitoring also returns a reference number for calls on the assigned device.
This call reference identifies the call, and can be used by the application for
call tracking. In addition, some CTC/AB routines require the call reference to
be passed as an argument to the routine.

Restrictions

This routine is not supported for channels assigned to monitor channels.

Aspect Application Bridge Message

None.

Routine Specifications 2–83

ctcAbSetMonitor

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

monitorMode
type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains one of the values in the
following table:

Value Description

ctcK_On Sets monitoring on for the device
ctcK_Off Sets monitoring off for the device

2–84 Routine Specifications

ctcAbSingleStepTransfer

ctcAbSingleStepTransfer
Transfer a Call

Format in C

unsigned int ctcAbSingleStepTransfer
(ctcChanId channel,
unsigned int callRefId,
unsigned char cct [ctcMaxDnLen],
unsigned int trunk,
unsigned int *newCallRefId,
struct ctcAbVarData *varData,
struct ctcAbStatsData *stats)

Description

The ctcAbSingleStepTransfer routine transfers a current call to the third party
and disconnects the assigned device.

If you need to consult with the destination party before transferring the
current call, use ctcAbHoldCall, ctcABConsultationCall, and ctcAbTransferCall.
See the descriptions of these routines for more information.

Restrictions

This routine is supported for channels assigned to stations, TeleSets, or trunks.

Aspect Application Bridge Message

Transfer Call Request (TCR)

The Application Bridge returns a Transfer Call Request Response message to
verify that the transfer is complete. The application is then free to call other
routines.

For full details of this message, refer to the Aspect Application Bridge
documentation.

Routine Specifications 2–85

ctcAbSingleStepTransfer

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

callRefId
type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call identifier value for the call you want to
transfer.

The call identifier value is the latest call reference returned by the
ctcAbGetEvent or ctcAbWinGetEvent routine.

cct
type: character string (unsigned)
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number
of the CCT you want to use. The CCT contains instructions for processing the
call within the Aspect CallCenter until it is connected.

This ASCII string contains a three-digit number. Specify the value 000 to use
Least Cost Routing.

The maximum length for cct is specified by the literal ctcMaxDnLen in a
CTC/AB definitions file (see Section 1.6). Note that this maximum length
includes the null termination character (NUL).

trunk
type: integer (unsigned)
access: read only
mechanism: by value

This argument specifies the trunk identifier of the party you want to transfer.

The trunk identifier value is the latest value returned by the ctcAbGetEvent
routine.

2–86 Routine Specifications

ctcAbSingleStepTransfer

newCallRefId
type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer into which the Aspect
CallCenter writes a call identifier value for the new transferred call.

varData
type: structure
access: read and write
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbVarData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbVarData {
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];

}

The structure contains the following fields:

• varDataA

This field contains information corresponding to the Application Bridge
variable field A. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataA is specified by the literal ctcMax-
DataALen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataB

This field contains information corresponding to the Application Bridge
variable field B. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataB is specified by the literal ctcMax-
DataBLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

Routine Specifications 2–87

ctcAbSingleStepTransfer

• varDataC

This field contains information corresponding to the Application Bridge
variable field C. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataC is specified by the literal ctcMax-
DataCLen in a CTC/AB definitions file (see Section 1.6). Note that this
maximum length does not include the null termination character (NUL).

• varDataD

This field contains information corresponding to the Application Bridge
variable field D. This ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for varDataD is specified by the literal
ctcMaxDataDLen in a CTC/AB definitions file (see Section 1.6). Note
that this maximum length does not include the null termination character
(NUL).

• varDataE

This field contains information corresponding to the Application Bridge
variable field E. This ASCII string can contain any combination of
alphanumeric characters.

The maximum length for varDataE is specified by the literal ctcMaxDataE-
Len in a CTC/AB definitions file (see Section 1.6). Note that this maximum
length does not include the null termination character (NUL).

stats
type: structure
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which, you
allocate memory of type ctcAbStatsData. The structure is defined in a CTC/AB
definitions file (see Section 1.6) and is formatted as follows:

struct ctcAbStatsData{
unsigned int rTime;
unsigned int qTime;
unsigned int tTime;

}

2–88 Routine Specifications

ctcAbSingleStepTransfer

The strings in the ctcAbStatsData structure are all null-terminated. The
ctcAbStatsData structure provides a statistics block for the call and contains
the following fields:

• rTime

A copy of the Application Bridge RTIME message is copied to this 32-
bit field. The RTIME message indicates the time (in seconds) that the
incoming call rang before it was answered.

• qTime

A copy of the Application Bridge QTIME message is copied to this 32-bit
field. The QTIME message indicates the time (in seconds) that the call was
in a queue before it was connected.

• tTime

A copy of the Application Bridge TTIME message is copied to this 32-bit
field. The TTIME message indicates the time (in seconds) that the called
remained connected to its first destination before it was transferred.

Routine Specifications 2–89

ctcAbTransferCall

ctcAbTransferCall
Transfer a Call

Format in C

unsigned int ctcAbTransferCall (ctcChanId channel)

Description

The ctcAbTransferCall routine completes the transfer of a call initiated by the
ctcAbConsultationCall routine. It transfers the call to a the destination device,
and disconnects the assigned device.

For example, for A to transfer to C an incoming call from B (where A’s current
call is the call from B):

1. B calls A, using ctcAbMakeCall, and A answers.

2. A place B on hold, using ctcAbHoldCall.

3. A calls C, using ctcAbConsultationCall.

4. A invokes ctcAbTransferCall when connected to C. B and C are now
connected and A is disconnected.

To screen (or supervise) a transfer, A waits until speaking to C before
invoking ctcAbTransferCall. For unscreened (or unsupervised) transfer, A
invokes ctcAbTransferCall before C answers the telephone. You can also use
ctcAbSingleStepTransfer to transfer the call directly to C. See the description
of ctcAbSingleStepTransfer for more information.

Restrictions

This routine is supported for channels assigned to TeleSets only.

Aspect Application Bridge Message

Process Key Request (PKR)

CTC/AB sends a Process Key Request to the Application Bridge to simulate
the user pressing a TeleSet TRANSFER key. The Application Bridge returns
a Process Key Request Response message to verify that the call is transferred.
The application is then free to call other routines.

2–90 Routine Specifications

ctcAbTransferCall

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

Routine Specifications 2–91

ctcAbWinGetEvent

ctcAbWinGetEvent
Get Information About Event and State Changes

Format in C

unsigned int ctcAbWinGetEvent (ctcChanId channel,
struct lpvASB *lpvASB,
HWND hWnd,
struct ctcAbEventData *eventData)

Description

The ctcAbWinGetEvent routine is available on CTC/AB clients running
Windows 3.1/3.11 or Windows for Workgroups only. It is a non-blocking routine
that enables a CTC/AB application to receive telephony events for the assigned
device.

ctcAbWinGetEvent returns the same information as ctcAbGetEvent. For
details, see the description of ctcAbGetEvent.

To use ctcAbWinGetEvent, you must first set monitoring on with the
ctcAbSetMonitor routine.

How ctcAbWinGetEvent Returns Event Data
When an event occurs at the assigned device, CTC/AB:

• Returns the event in the ctcAbEventData structure

• Posts a PM_CTC_EVENT completion message to the window specified by
the hWnd argument

Associated with the completion message is an lParam parameter that specifies
the address for the lpvASB structure. The lpvASB structure contains the
routine completion status and a read-only value, for example, a pointer to the
ctcAbEventData structure into which event information has been written.

The amount of information that CTC/AB returns depends on the information
provided by the Aspect CallCenter. This may be different for a call that is
internal to the Aspect CallCenter and for an outside call, depending on the
type of trunks connected to the Aspect CallCenter.

2–92 Routine Specifications

ctcAbWinGetEvent

Using ctcAbWinGetEvent With TeleSets and Trunks
For channels assigned to TeleSets or trunks, some event information is
available with Application Bridge Release 6.0 only (see Tables 2–2, 2–3, and
2–4). To receive this information, a channel must be assigned to the ACD group
or trunk group associated with the device before you assign to the device.

For example, to receive Application Bridge Release 6.0 events for the TeleSets
in an ACD group, you:

1. Assign a channel to the ACD group

2. Assign a channel to each TeleSet in the ACD group

You do not need to assign more than one channel to the ACD group. CTC/AB
returns the additional events on each channel assigned to a TeleSet in the
group.

Using ctcAbWinGetEvent With InterQueue Points
If your Aspect CallCenter is part of a network of CallCenters, you can monitor
calls that it receives from another CallCenter by assigning a channel to an
InterQueue.

A Network InterQueue is a virtual channel used to notify a CallCenter that it
will receive a call from another CallCenter in the network. When the target
CallCenter receives this notification, it processes it as if the call had already
been presented. For example, it can respond with an Application Bridge Call
Information Message (CIM) or Call Track Information Message (CTIM). At the
same time, it negotiates receipt of the call over a real trunk.

When CTC/AB receives an Application Bridge message for a call associated
with the InterQueue, it generates an event shown in Table 2–5. As soon as
negotiation for a trunk is complete, the call is no longer associated with the
InterQueue. Instead, CTC/AB receives Application Bridge messages for the call
on the trunk and generates corresponding events. Table 2–3 shows CTC/AB
events that are returned for trunks.

This means that to track the progress of the call, a channel must be assigned
to both the InterQueue point and the trunk used for the call.

Routine Specifications 2–93

ctcAbWinGetEvent

Restrictions

The following restrictions apply:

• This routine is not supported for channels assigned to monitor channels.

• This routine is supported on CTC/AB clients running Windows 3.1/3.11 or
Windows for Workgroups only.

• Not all events described are supported with Application Bridge Release 5.0.
Tables 2–2, 2–3, and 2–4 indicate which events require Release 6.0.

• Aspect Application Bridge Release 5.0 does not return information for the
following ctcAbEventData structure fields:

aniDigits
dnisDigits
agentId
agentGroup
agentMode

Arguments

channel
type: ctcChanId
access: read only
mechanism: by value

This argument is a ctcChanId datatype that contains the channel identifier
(channel ID) value returned by ctcAbAssign for the device in use.

2–94 Routine Specifications

ctcAbWinGetEvent

lpvASB
type: structure
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which
you allocate memory of type lpvASB. The structure is defined in CTABWI6.H
installed on your system.

The lpvASB structure is formatted as follows:

struct lpvASB{
unsigned int dwStatus;
unsigned int lpvDataPointer;
unsigned int lpvChannel;

}

The lpvASB structure contains the following fields:

• dwStatus

On completion of the asynchronous procedure, this 32-bit field contains the
routine completion status. This is a write only value.

• lpvDataPointer

This 32-bit field contains a read only value. For example, if you are
monitoring multiple channels, you can use this field to identify the
ctcAbEventData structure into which event information has been written.

• lpvChannel

On completion of the asynchronous procedure, this 32-bit field contains the
identifier for the channel for which you want event information.

hWnd
type: HWND
access: read only
mechanism: by reference

This handle specifies the window where CTC/AB returns the PM_CTC_EVENT
message generated by an event at the assigned device.

Routine Specifications 2–95

ctcAbWinGetEvent

eventData
type: structure
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAbEventData. The structure is defined in one of the
CTC/AB definitions files (see Section 1.6) and is formatted as follows:

struct ctcAbEventData{
unsigned int refId;
unsigned int trackNumber;
unsigned int trackNode;
unsigned int oldRefId;
unsigned int oldTrackNumber;
unsigned int oldTrackNode;
unsigned int event;
unsigned int otherPartyType;
unsigned char otherParty [ctcMaxDnLen];
unsigned int otherPartyTrunk;
unsigned char aniDigits [ctcMaxDnLen];
unsigned char dnisDigits [ctcMaxDnLen];
unsigned char lineId [ctcMaxDnLen];
unsigned char agentId [ctcMaxDnLen];
unsigned char agentGroup [ctcMaxDnLen];
unsigned int agentMode;
unsigned char varDataA [ctcMaxDataALen];
unsigned char varDataB [ctcMaxDataBLen];
unsigned char varDataC [ctcMaxDataCLen];
unsigned char varDataD [ctcMaxDataDLen];
unsigned char varDataE [ctcMaxDataELen];
unsigned char subType [ctcMaxSubTypeLen];
unsigned int rTime;
unsigned int qTime;
unsigned int tTime;
unsigned char monitorParty [ctcMaxDnLen];
unsigned char nestedMonitorChannel [ctcMaxDnLen];

}

The strings in this structure are all null-terminated. For a description of these
fields, refer to the description of the ctcAbGetEvent routine.

2–96 Routine Specifications

3
Error and Condition Values Returned

Table 3–1 provides a brief description of the errors and condition values that
can be returned by CTC/AB routines.

Use Table 3–1 in conjunction with the ctcAbErrMsg routine. This routine
provides the name of the condition or error associated with a returned value.
For more information, refer to the description of ctcAbErrMsg routine in
Chapter 2.

3.1 Mapping Errors to Routines
It is not possible to specify which specific errors and conditions can be returned
for each CTC/AB routine. However to help you determine and isolate problems,
Table 3–1 shows the source of the reported condition: the CTC/AB API, the
CTC/AB server, or the Aspect CallCenter.

The following general guidelines apply:

• Errors from the CTC/AB API are usually returned for programming errors.
For example, if you specify an invalid type or argument.

• Condition values from the CTC/AB server are usually associated with
resources, or CTC/AB management.

• Condition values from the Aspect CallCenter are often returned when there
is a problem with the device state or the call reference. For example, when
you provide an invalid call reference, or try to perform an operation and
the device is in the wrong state for that operation.

Error and Condition Values Returned 3–1

Table 3–1 Condition Values Returned

Condition From Description

ctcBadObjState Aspect CallCenter The object is in the incorrect state for the service. The
Aspect CallCenter is unable to provide more specific
information.

ctcBindFail CTC/AB API An RPC network binding handle cannot be created
from the serverName and networkType arguments for
ctcAbAssign.

ctcComFail CTC/AB server Insufficient virtual memory has been detected during
the communications initialization procedure.

ctcCondError CTC/AB server An internal error has occurred on the CTC/AB server.

ctcCondWaiting CTC/AB server An internal error has occurred on the CTC/AB server.

ctcDeadLock CTC/AB server An internal error has occurred on the CTC/AB server.

ctcEventDataLost CTC/AB server A number of events have occurred at the same time
and some event data has been lost.

ctcEventInProgress CTC/AB server The ctcAbGetEvent or ctcAbWinGetEvent routine has
already been called.

ctcInitFail CTC/AB server Insufficient virtual memory has been detected during
the communications initialization procedure.

ctcInsMem CTC/AB server Insufficient virtual memory available, either on the
CTC/AB server or the CTC/AB client, to complete
the routine. Check your application’s use of memory
and ask your system manager to check the system
parameters.

ctcInvAgentMode CTC/AB API The agentMode argument for ctcAbSetAgentStatus
contains an invalid value.

ctcInvalidDest Aspect CallCenter The specified called party is invalid.

ctcInvalidFeature Aspect CallCenter The request specified an invalid feature.

ctcInvCallIdentifier Aspect CallCenter The call identifier is invalid.

ctcInvCct CTC/AB server The specified CCT is invalid.

ctcInvChan CTC/AB API An invalid channel identifier was specified. Specify
the channel identifier as returned by the ctcAbAssign
routine.

ctcInvClassOfService Aspect CallCenter The specified Class Of Service (COS) is not recognized
by the Aspect CallCenter.

ctcInvDevIdentifier Aspect CallCenter The device identifier is invalid.

(continued on next page)

3–2 Error and Condition Values Returned

Table 3–1 (Cont.) Condition Values Returned

Condition From Description

ctcInvGroup Aspect CallCenter The specified ACD group or trunk group is not
recognized by the Aspect CallCenter.

ctcInvLogId CTC/AB API The specified logical identifier is invalid or does
not exist. Make sure you specify the same logical
identifier as defined on the CTC/AB server, which
specifies the Aspect CallCenter in use.

ctcInvMonitorMode CTC/AB API The monitorMode argument for ctcAbSetMonitor
contains an invalid value.

ctcInvNetType CTC/AB API The networkType argument for ctcAbAssign contains
an invalid or unsupported RPC protocol sequence
string.

ctcInvokeLockError CTC/AB server An internal error has occurred on the CTC/AB server.

ctcInvokeUnlockError CTC/AB server An internal error has occurred on the CTC/AB server.

ctcInvServerName CTC API The serverName parameter for ctcAbAssign contains
an invalid CTC/AB server name or address string.

ctcInvTeam Aspect CallCenter The specified team is not recognized by the Aspect
CallCenter.

ctcLCBFail CTC/AB server Insufficient virtual memory has been detected during
the communications initialization procedure.

ctcLCBQLockError CTC/AB server An internal error has occurred on the CTC/AB server.

ctcLCBQUnlockError CTC/AB server An internal error has occurred on the CTC/AB server.

ctcLinkConnectFail CTC/AB server The link between the CTC/AB server and the Aspect
CallCenter has failed.

ctcLinkDown CTC/AB server The link between the CTC/AB server and the Aspect
CallCenter is down.

ctcLogIdTooLong CTC/AB API Logical identifier is too long.

ctcMonAreadyOn CTC/AB API Monitoring is already set on for this channel.

ctcMonitorOff CTC/AB API Monitoring is set off for this channel so the call to
ctcAbGetEvent has been returned.

ctcMonMaxExceeded CTC/AB API The maximum number of monitors for the
CTC/AB server has been reached.

ctcMonNotOn CTC/AB API Monitoring is not set on for this channel.

ctcMutexLocked CTC/AB server An internal error has occurred on the CTC/AB server.

(continued on next page)

Error and Condition Values Returned 3–3

Table 3–1 (Cont.) Condition Values Returned

Condition From Description

ctcNetWriteErr CTC/AB API The CTC/AB client cannot communicate with the
CTC/AB server because the link is down or there are
insufficient resources on the CTC/AB client.

ctcNoEvent CTC/AB API The dontWait argument for ctcAbGetEvent is
set to TRUE and there is no event data at the
CTC/AB server for this channel.

ctcNotMon CTC/AB server Monitoring is not currently enabled.

ctcNoUnlock CTC/AB server An internal error has occurred on the CTC/AB server.

ctcParseErr CTC/AB server The CTC/AB server could not parse the message from
the Aspect CallCenter. This indicates an internal
error. Report the problem to Dialogic.

ctcRcvReqRej CTC/AB server The Aspect CallCenter rejected a message or request
from the CTC/AB server. This indicates an internal
error. Report the problem to Dialogic.

ctcReadError CTC/AB server The read data request on the link between the
CTC/AB server and the Aspect CallCenter has
returned an error. This could indicate that the Aspect
CallCenter has stopped or restarted the link, or that
there may be a problem with the link hardware.

ctcRequestPending Aspect CallCenter The request is waiting to be processed by the Aspect
CallCenter.

ctcSuccess CTC/AB API The routine completed successfully.

ctcTimeout CTC/AB server The Aspect CallCenter did not respond to the request
from the CTC/AB server. There may be a problem
with the link between the CTC/AB server and the
Aspect CallCenter, or the Aspect CallCenter may be
too busy to respond.

ctcUCBFail CTC/AB server The UCB initialization procedure detected insufficient
virtual memory on the CTC/AB server.

ctcUnsupProc CTC/AB API The specified procedure is not supported for the
assigned device.

ctcXmitError CTC/AB server The send data request on the link between the
CTC/AB server and the Aspect CallCenter has
returned an error condition.

3–4 Error and Condition Values Returned

Index

A
ACD group

routines supported, 2–11
Add monitor

ctcAbAddMonitor, 2–2
Answering a call

ctcAbAnswerCall, 2–6
Application Bridge

Agent State Event Message (ASEM),
2–40

Answer Call Request (ACR), 2–6
Call Conferenced Event Message

(CCFEM), 2–43
Call Connected Event Message (CCEM),

2–43
Call Connect Message (CCM), 2–40
Call Disconnected Event Message

(CDEM), 2–44
Call Disconnect Message (CDM), 2–41,

2–45, 2–48
Call Information Message (CIM), 2–24,

2–45, 2–48
Call Noticed Event Message (CNEM),

2–43, 2–47, 2–49
Call Offered Event Message (COEM),

2–42
Call Queued Event Message (CQEM),

2–41, 2–46, 2–48
Call Retrieved Event Message (CREM),

2–44
Call Track Information Message (CTIM),

2–24, 2–38, 2–39, 2–41, 2–46, 2–48

Application Bridge (cont’d)
Call Track Transfer Message (CTTM),

2–38, 2–42
Call Transfer Message (CTM), 2–42, 2–47
Equipment Status Request (ESR), 2–10
Event Monitor Request (EMR), 2–10,

2–23
Make Predictive Call Request (MPCR),

2–64
messages, 1–6
Place Call Request (PCR), 2–19, 2–59
Process Key Request (PKR), 2–16, 2–58,

2–78, 2–80, 2–90
Release Call Request (RCR), 2–56
releases supported, vii, 2–1
restrictions, viii
Retrieve Call Request (RTCR), 2–78
software required, vii
Transfer Call Request (TCR), 2–85

Arguments
optional, 1–8
order, 1–5
passed by reference, 1–8
passed by value, 1–8
use, 1–6

Assigning a channel
ctcAbAssign, 2–8

ASS_TRACKNODE
Aspect Application Bridge field, 2–39

ASS_TRACKNUM
Aspect Application Bridge field, 2–38

Index–1

B
Bitmasks, 1–9

C
Call reference identifier

description, 2–38
monitoring, 2–83
returned by ctcAbGetEvent, 2–38

Calls
deflecting, 2–24
events, 2–39
routing, 2–24

Channel
assigning, 2–8
deassigning, 2–23
identifier, 2–8
monitoring, 1–4

Communications channel
See channel

Compiling a program
Digital UNIX, 1–15
HP-UX, 1–15
OpenVMS, 1–16
OS/2, 1–17
SCO OpenServer, 1–16
Windows 3.1/3.11, 1–14
Windows 95, 1–13
Windows NT, 1–13

Condition values, 3–1 to 3–4
definitions file, 1–9
using, 1–9
with ctcAbErrMsg, 2–28

Conference calls
completing, 2–16
ctcAbConferenceJoin, 2–16
ctcAbConsultationCall, 2–18
maximum number of parties, 2–19

Configuration Program, 2–15
Constants

definitions file, 1–9
description, 1–9

Consultation hold
ctcAbConsultationCall, 2–18
retrieving the call, 2–78

Control Program, 2–15
ctcAbAddMonitor, 2–2

and Windows 3.1/3.11, 2–3
ctcAbAnswerCall, 2–6
CTC/AB API

shareable object, 1–15
ctcAbAssign, 2–8
ctcAbConferenceJoin, 2–16
ctcAbConsultationCall, 2–18
ctcAbDeassign, 2–23

and link down, 1–10
and link reset, 1–10
and monitor channels, 2–76
when to use, 2–23

ctcAbDeflectCall, 2–24
ctcAbErrMsg, 2–28, 2–33
ctcAbGetChannelInformation, 2–30

information returned by, 2–30
when to use, 2–30

ctcAbGetEvent, 2–34
creating a thread for, 1–12
lost event data, 2–35

ctcAbGetMonitor, 2–54
ctcAbHangupCall, 2–56
ctcAbHoldCall, 2–58
ctcAbMakeCall, 2–59

and conferencing, 2–19
ctcAbMakePredictiveCall, 2–64
ctcAbReassignResource, 2–73
ctcAbRemoveMonitor, 2–76
ctcAbRetrieveHeld, 2–78
ctcAbSetAgentStatus, 2–80
ctcAbSetMonitor, 2–83

and monitor channels, 2–10
ctcAbSingleStepTransfer, 2–85
ctcAbTransferCall, 2–90
ctcAbWinGetEvent, 2–92

and InterQueue points, 2–93
and TeleSets, 2–93
and Trunks, 2–93
returning data, 2–92

Index–2

D
Data structures

definitions file, 1–9
description, 1–7

Data types, 1–6
ctcChanId, 1–7, 2–12
structures, 1–7

DATA variables
Aspect Application Bridge fields, 2–51

DCE Thread Library, 1–12
Deassigning a channel

ctcAbDeassign, 2–23
DECnet, 2–15
Definitions files

condition values, 1–9
constants, 1–9
data structures, 1–9
location, 1–9

Deflecting a call
ctcAbDeflectCall, 2–24

Devices
channels assigned, 2–10
identifying, 2–8
routines supported, 2–11

Digital UNIX
compiling and linking programs, 1–15

Directory number, 2–59
Disconnecting a call

Call Disconnected Event Message
(CDEM), 2–44

Call Disconnect Message (CDM), 2–41
ctcAbHangupCall, 2–56

Dynamic run-time import
linking Windows 3.1/3.11 programs, 1–14

E
Error messages

See condition values
Event Bridge, vii
Events, 2–39, 2–40

data lost, 2–3, 2–35
for ACD groups, 2–48

Events (cont’d)
for InterQueues, 2–48
for stations, 2–40
for TeleSets, 2–40
for trunk groups, 2–48
for trunks, 2–45

Exception handling, 1–10

F
Feature phone

hands-free answering, 2–6

G
Get routines

ctcAbGetChannelInformation, 2–30
ctcAbGetEvent, 2–34
ctcAbGetMonitor, 2–54
ctcAbWinGetEvent, 2–92

H
Hanging up a call

ctcAbHangupCall, 2–56
Held calls

retrieving, 2–78
Hold

ctcAbHoldCall, 2–58
putting a call on, 2–58

HP-UX
compiling and linking programs, 1–15

I
Implicit import

linking Windows 3.1/3.11 programs, 1–14
Interactive Voice Response unit

See IVR
InterQueue

Application Bridge messages, 2–9
assigning to, 2–9
description, 2–9
routines supported, 2–11

Index–3

IVR, 2–8

L
Least cost routing, 2–60, 2–65, 2–86
Line type, 2–30
Link

gone down, 1–10
logical identifier, 2–15
reset, 1–10

Linking a program
Digital UNIX, 1–15
HP-UX, 1–15
OpenVMS, 1–16
OS/2, 1–17
SCO OpenServer, 1–16
Windows 3.1/3.11, 1–14
Windows 95, 1–13
Windows NT, 1–13

Literals, 1–9
Local RPC, 2–15
Logical identifier

specifying, 2–15
Lost event data, 2–35

M
Making calls

ctcAbMakeCall, 2–59
ctcAbMakePredictiveCall, 2–64

Masks, 1–9
Monitor channel

routines supported, 2–11
Monitor channels, 1–3

ctcAbAddMonitor, 2–2
ctcAbRemoveMonitor, 2–76
ctcAbSetMonitor, 2–10
description, 2–2
monitoring other monitor channels, 2–3

Monitoring, 2–83
devices, 2–34, 2–83
events, 2–39
for incoming call, 2–6
information, 2–54
logical entities, 2–34

Monitoring (cont’d)
monitor channels, 2–3, 2–34
off, 2–84
on, 2–84
other parties, 2–49

Multithreaded programs
and Windows 3.1/3.11, 1–11
creating, 1–12
description, 1–11
when to use, 1–11
with CTC/AB, 1–12

N
Named pipes, 2–15
NetBIOS, 2–15
Network InterQueue

See InterQueue
Network problems

exception-handling, 1–10
Network protocols

communication with CTC/AB server,
2–15

DECnet, 2–15
Local RPC, 2–15
Named pipes, 2–15
NetBIOS over NetBEUI, 2–15
NetBIOS over TCP/IP, 2–15
Novell SPX, 2–15
TCP/IP, 2–15

NEW_TRACKNODE
Aspect Application Bridge field, 2–38

NEW_TRACKNUM
Aspect Application Bridge field, 2–38

Novell SPX, 2–15

O
OpenVMS

compiling and linking programs, 1–16
Options file, 1–16
OS/2

compiling and linking programs, 1–17

Index–4

Other party information, 2–49

P
Parties

in a conference call, 2–19
other party information, 2–49

Passing mechanism
and optional arguments, 1–8
by reference, 1–8
by value, 1–8

Predictive dialing, 2–64
Programs

linking, 1–13 to 1–16
multithreaded, 1–12

Q
QTIME

Aspect Application Bridge field, 2–52,
2–89

R
Reassign agents

ctcAbReassignResource, 2–73
Removing devices from a monitor channel

ctcAbRemoveMonitor, 2–76
Resource Bridge, vii
Retrieving a call on hold

ctcAbRetrieveHeld, 2–78
Routines

access to data, 1–7
arguments, 1–6
ctcAbAddMonitor, 2–2
ctcAbAnswerCall, 2–6
ctcAbAssign, 2–8
ctcAbConferenceJoin, 2–16
ctcAbConsultationCall, 2–18
ctcAbDeassign, 2–23
ctcAbDeflectCall, 2–24
ctcAbErrMsg, 2–28
ctcAbGetChannelInformation, 2–30
ctcAbGetEvent, 2–34
ctcAbGetMonitor, 2–54

Routines (cont’d)
ctcAbHangupCall, 2–56
ctcAbHoldCall, 2–58
ctcAbMakeCall, 2–59
ctcAbMakePredictiveCall, 2–64
ctcAbReassignResource, 2–73
ctcAbRemoveMonitor, 2–76
ctcAbRetrieveHeld, 2–78
ctcAbSetAgentStatus, 2–80
ctcAbSetMonitor, 2–83
ctcAbSingleStepTransfer, 2–85
ctcAbTransferCall, 2–90
ctcAbWinGetEvent, 2–92
format, 1–5
how to call, 1–10
in a multithreaded program, 1–12
overview, 1–3 to 1–17
passing mechanism, 1–8
status returns, 1–9
synchronous operation, 1–10

Routing
calls, 2–24
ctcAbDeflectCall, 2–24
least cost, 2–60, 2–65, 2–86

RTIME
Aspect Application Bridge field, 2–51,

2–89

S
Screened transfer, 2–90
Set routines

ctcAbSetAgentStatus, 2–80
ctcAbSetMonitor, 2–83

Single-step transfer, 2–85
States

monitoring, 2–83
Station

routines supported, 2–11
Status returns, 1–9

unsigned longwords, 1–6
Structure

description, 1–7
SUBTYPE

Aspect Application Bridge field, 2–51

Index–5

T
TCP/IP, 2–15
Telephony functions, 1–5
TeleSet

READY key, 2–81
RELEASE key, 2–81
routines supported, 2–11
WRAP-UP key, 2–81

Threads
and data passing, 1–12
description, 1–11
execution, 1–11

Thread stack size
Windows 95 programs, 1–13
Windows NT programs, 1–13

Track
node, 2–38
number, 2–38

TRACKNODE
Aspect Application Bridge field, 2–38

TRACKNUM
Aspect Application Bridge field, 2–38

Transferring a call
ctcAbSingleStepTransfer, 2–85
ctcAbTransferCall, 2–90
initiating, 2–18
screened and unscreened, 2–90
single-step transfer, 2–85

Trunk
routines supported, 2–11

Trunk group
routines supported, 2–11

TTIME
Aspect Application Bridge field, 2–52,

2–89

U
Unscreened transfer, 2–90
Unsigned integers

and Windows 3.1/3.11, 1–6

W
Windows 3.1/3.11

compiling programs, 1–14
ctcAbWinGetEvent, 2–92
dynamic run-time import, 1–14
implicit import, 1–14
linking programs, 1–14
unsigned longwords, 1–6
Windows for Workgroups, x

Windows 95
compiling and linking programs, 1–13

Windows NT
compiling and linking programs, 1–13

Index–6

